ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Preferred Device

Triacs

Silicon Bidirectional Thyristors

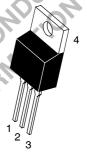
Designed primarily for full-wave ac control applications such as lighting systems, heater controls, motor controls and power supplies; or wherever full-wave silicon-gate-controlled devices are needed.

- Off-State Voltages to 800 Volts
- All Diffused and Glass Passivated Junctions for Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Thermal Resistance and High Heat Dissipation
- Gate Triggering Guaranteed in Four Modes
- Device Marking: Logo, Device Type, e.g., MAC223A6, Date Code

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

, -			
Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage ⁽¹⁾ (T _J = -40 to 125°C, Sine Wave 50 to 60 Hz, Gate Open)	V _{DRM} , V _{RRM}		Volts
MAC223A6		400	
MAC223A8		600	Co
MAC223A10		800	13
On–State Current RMS Full Cycle Sine Wave 50 to 60 Hz (T _C = 80°C)	I _{T(RMS)}	25	À
Peak Non-repetitive Surge Current (One Full Cycle, 60 Hz, T _C = 80°C) Preceded and followed by rated current	I _{TSM}	250	A
Circuit Fusing (t = 8.3 ms)	l ² t	260	A ² s
Peak Gate Current (t \leq 2.0 μ sec; T _C = +80°C)	I _{GM}	2.0	Α
Peak Gate Voltage (t \leq 2.0 μ sec; T _C = +80°C)	V _{GM}	±10	Volts
Peak Gate Power (t \leq 2.0 µsec; T _C = +80°C)	Р _{GМ}	20	Watts
Average Gate Power (T _C = 80°C, t = 8.3 ms)	$P_{G(AV)}$	0.5	Watts
Operating Junction Temperature Range	TJ	-40 to 125	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C
Mounting Torque	_	8.0	in. lb.

⁽¹⁾ V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.



ON Semiconductor

http://onsemi.com

TRIACS 25 AMPERES RMS 400 thru 800 VOLTS

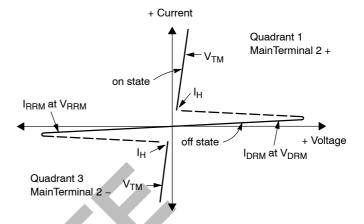
TO-220AB CASE 221A STYLE 4

PIN ASSIGNMENT			
1	Main Terminal 1		
2	Main Terminal 2		
3	Gate		
4	Main Terminal 2		

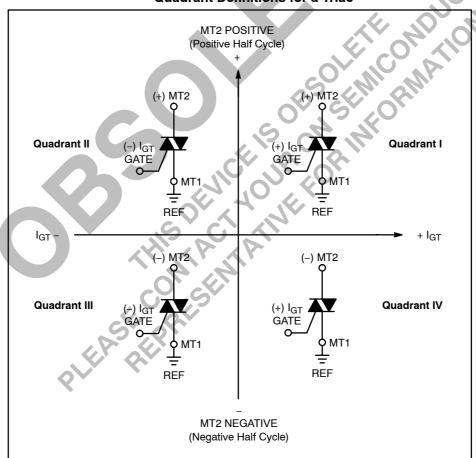
ORDERING INFORMATION

Device	Package	Shipping
MAC223A6	TO220AB	500/Box
MAC223A8	TO220AB	500/Box
MAC223A10	TO220AB	500/Box

Preferred devices are recommended choices for future use and best overall value.


THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.2	°C/W
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	60	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	T _L	260	°C


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
$ \begin{array}{ll} \mbox{Peak Repetitive Blocking Current} & T_{J} = 25^{\circ}\mbox{C} \\ \mbox{($V_{D} = Rated V_{DRM}, V_{RRM}; Gate Open)} & T_{J} = 125^{\circ}\mbox{C} \\ \end{array} $	I _{DRM,} I _{RRM}	_ _		10 2.0	μA mA
ON CHARACTERISTICS					
Peak On–State Voltage (ITM = ± 35 A Peak, Pulse Width ≤ 2 ms, Duty Cycle $\leq 2\%$)	V _{TM}		1.4	1.85	Volts
Gate Trigger Current (Continuous dc) $ (V_D = 12 \text{ V}, \text{ R}_L = 100 \ \Omega) \\ \text{MT2(+)}, \text{ G(+); MT2(-), G(-); MT(+), G(-)} \\ \text{MT2(-)}, \text{ G(+)} $	lgт	_	20 30	50 75	mA
Gate Trigger Voltage (Continuous dc) $ (V_D = 12 \text{ V}, \text{ R}_L = 100 \ \Omega) \\ \text{MT2(+)}, \text{ G(+); MT2(-), G(-); MT(+), G(-)} \\ \text{MT2(-), G(+)} $	V _{GT}	CON	1:1 1:3	2.0 2.5	Volts
Gate Non-trigger Voltage $(V_D = 12 \text{ V, } T_J = 125^{\circ}\text{C, } R_L = 100 \Omega)$ All Quadrants	V _{GD}	0.2	0.4	_	Volts
Holding Current (V _D = 12 Vdc, Gate Open, Initiating Current = ±200 mA)			10	50	mA
Turn–On Time $(V_D = Rated V_{DRM}, I_{TM} = 35 A Peak, I_Q = 200 mA)$	tgt	_	1.5		μs
PYNAMIC CHARACTERISTICS	, <				
Critical Rate of Rise of Off-State Voltage (V_D = Rated V_{DRM} , Exponential Waveform, T_C = 125°C)	dv/dt	_	40		V/μs
Critical Rate of Rise of Commutation Voltage (V _D = Rated V _{DRM} , I _{TM} = 35 A Peak, Commutating di/dt = 12.6 A/ms, Gate Unenergized, T _C = 80°C)	dv/dt(c)	_	5.0		V/µs
di/dt = 12.6 A/ms, Gate Unenergized, T _C = 80°C)					

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

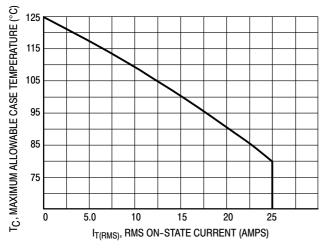


Figure 1. RMS Current Derating

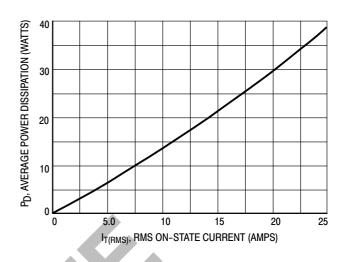
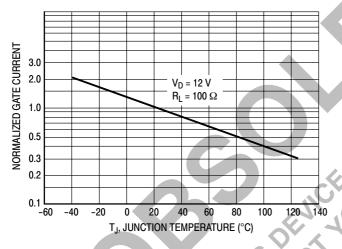



Figure 2. On-State Power Dissipation

Figure 3. Typical Gate Trigger Current

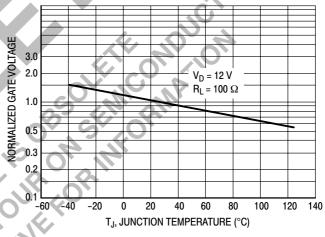


Figure 4. Typical Gate Trigger Voltage

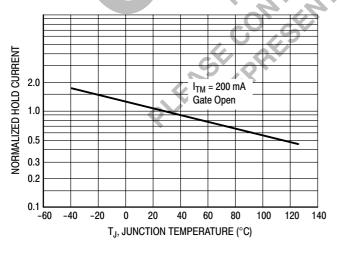


Figure 5. Typical Hold Current

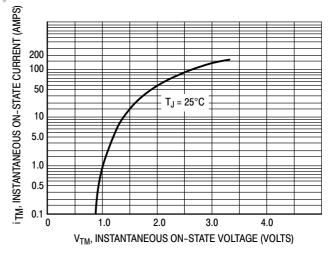
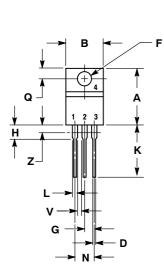
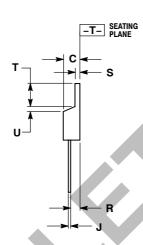




Figure 6. Typical On-State Characteristics

PACKAGE DIMENSIONS

TO-220AB CASE 221A-07 **ISSUE Z**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- CONTROLLING DIMENSION: INCH.
 DIMENSION Z DEFINES A ZONE WHERE ALL **BODY AND LEAD IRREGULARITIES ARE** ALLOWED

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
٦	0.045	0.060	11.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
B	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
c	0.000	0.050	0.00	1.27
۸	0.045		1.15	
Z		0.080		2.04

- MAIN TERMINAL 1
 - MAIN TERMINAL 2
 - GATE
 - MAIN TERMINAL 2

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative