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Preface / Introduction

Lecture description

Newton–Cartan gravity is a reformulation of Newtonian gravity in geometric language,
bringing it closer to General Relativity (GR) than the standard formulation. This allows
for a coordinate-free understanding of how GR reduces to Newtonian gravity in the
‘non-relativistic’ limit. In this lecture course, we will explore Newton–Cartan gravity in
detail and have a look at some modern developments.

Prerequisites: To follow the course, a good understanding of basic differential geometry
(manifolds, differential forms, tensor fields, connections) is indispensable, so I suggest
that participants should have taken (at least) an introductory course either in General
Relativity or in Riemannian geometry. For the second part, an understanding of
principal bundles and associated vector bundles is necessary; this can, however, also be
(briefly) covered in additional sessions, according to demand.

Some history, plan of the lecture, and literature

The geometrised formulation of Newtonian gravity that is today known as Newton–
Cartan gravity was developed by Élie Cartan (who also introduced, for example, the
concept of differential forms) in 1923 [Car23; Car24] with the aim of clarifying the
connection of GR to Newtonian gravity. In 1926 (published in 1928), Kurt Friedrichs re-
discovered the formalism independently [Fri28]. Important further contributions to the
theory were made by Andrzej Trautman in the 1960s [Tra63; Tra65], who modernised
some of the notation and realised the importance of an additional geometric condition,
and by Hans Peter Künzle in the 1970s [Kün72; Kün76], who gave the first complete
presentation of the formalism in its modern form (for more details on the history in
between, see the references of the articles cited here). In a 1981 article [Ehl81], Jürgen
Ehlers discussed ‘frame theory’, a framework comprising both GR and Newton–Cartan
gravity, and made precise some of the earlier results of Künzle on the relation of GR

and Newtonian / Newton–Cartan gravity.
In the first part of this lecture course, we will develop and explore this ‘classical’
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Preface / Introduction

Newton–Cartan theory as discussed by Künzle and Ehlers. The philosopher of physics
David Malament has written a textbook [Mal12] on foundational issues of GR with an
extensive chapter on Newton–Cartan gravity. This is, in my (the lecturer’s) opinion,
an excellent presentation of the subject, apart from one rather unfortunate point:
Malament’s textbook is aimed at students with no prior exposure to GR or differential
geometry, and therefore proceeds often in a very elementary way. This is of course a
great approach for an elementary textbook, but in my opinion it precludes appreciation
of some geometric aspects of the theory. Therefore, in this course we will make use
of differential-geometric methods more heavily. Nevertheless, Malament’s book is the
go-to resource if you want another perspective on results covered in the first half of
this course.

The second part of the course will deal with a more modern, somewhat gauge-
theoretic perspective on Newton–Cartan theory that started to develop in the 1980s in
the context of the description of matter coupling to gravitational fields [DK84; Duv+85].
In 2011, this approach was revived / rediscovered by quantum field theorists / string
theorists [And+11], and in 2015 this was put in a more explicitly differential-geometric
formalism [GPR15], which generalised the perspective from the 1980s and related it to
some other modern developments that had happened in the early 2010s (see below).
It is this formalism developed in 2015, put in an even more explicitly geometric form,
that we will cover in the second half of the course. For this, we will need the notions
of principal fibre bundles and associated vector bundles, which are not going to be
introduced in the lecture. If you have no experience with principal bundles, you need
to get acquainted with the theory in order to follow the second half of the lectures (it
is foundational for modern differential geometry, so there are lots of textbooks and
lecture notes covering it). Probably, we will cover a little bit of principal bundle theory
in some extra sessions prior to the corresponding lectures.

Newton–Cartan theory and certain generalisations thereof became a hot topic of
research again in the early 2010s. On the one hand, this is due to the discovery that it
can be employed in the effective description of effects in Galilei-relativistic condensed
matter physics, starting with the quantum Hall effect [Son13], which led to a broad
interest in the condensed matter community. On the other hand, ‘stringy’ versions of
Newton–Cartan gravity have been constructed [And+12], which play a role in so-called
‘non-relativistic’, i.e. Galilei-relativistic, versions of string theory and in ‘non-relativistic
holography’, i.e. Galilei-relativistic realisations of the ‘holographic principle’ that is
believed to be an important aspect of string theory. However, since I (the lecturer) have
no experience with either condensed matter theory or string theory, these aspects will
not be covered in the lecture course. Nevertheless, these developments have also led to
implications for the purely classical-gravitational case, on which we will hopefully get
at least a small outlook at the end of the course.
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1. Galilei manifolds

Here, we will introduce and develop the basic framework for the description of space-
time in Newton–Cartan gravity: so-called Galilei manifolds and Galilei connections on
them.

1.1. Foundations

Definition 1.1. A Galilei manifold is an (n + 1)-dimensional differentiable1 manifold2 M
together with

(i) a nowhere-vanishing one-form τ ∈ Ω1(M), called the clock form, and

(ii) a symmetric contravariant degree-2 tensor field h = hµν ∂µ ⊗ ∂ν ∈ Γ(TM ⊗ TM),
hµν = hνµ, of signature (n, 0, 1) (i.e. in a Sylvester basis, its components are
diag(0, 1, . . . , 1︸ ︷︷ ︸

n

)), called the space metric, such that

(iii) τ spans the degenerate direction of h, i.e.

τµhµν = 0. (1.1)

A vector v ∈ TM is spacelike iff τ(v) = 0, and timelike otherwise. It is future-directed
iff τ(v) > 0.

The Galilei manifold has absolute time iff the clock form is closed, i.e. dτ = 0.

Points of M are interpreted as spacetime events. τ is interpreted as measuring time,
i.e. the integral ∫

γ
τ =

∫
γ

τµdxµ =
∫ λf

λi

dλ
dxµ(λ)

dλ
τµ(x(λ)) (1.2)

of τ along a curve γ is the time elapsed along γ.

1For simplicity, we will always assume all objects to be smooth, i.e. C∞. However, in almost all cases, a
finite degree of differentiability is sufficient.

2We use the standard conventions of modern differential topology, i.e. manifolds are Hausdorff and
second countable / paracompact.
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1. Galilei manifolds

If we assume τ ∧ dτ = 0, then by the Frobenius theorem the distribution ker τ ⊂ TM
of spacelike vectors is integrable, i.e. M is foliated by submanifolds whose tangent
spaces at each point are the respective spaces of spacelike vectors. Put differently,
τ ∧ dτ = 0 implies that spacetime is foliated by n-dimensional ‘leaves of space’.

Assuming the even stronger condition dτ = 0, the time between two events is
independent of the curve connecting them (under some mild topological assumptions):
taking two curves γ1, γ2 connecting the same two points, by Stokes’ theorem we have∫

γ1

τ −
∫

γ2

τ =
∫

∂A
τ =

∫
A

dτ = 0, (1.3)

where A is any surface filling up3 the boundary curve ∂A = γ1 ∪ γ2 (with the bar over
γ2 denoting reversed orientation). In this sense, a closed clock form defines an absolute
notion of time, which is why we say that a Galilei manifold with closed clock form has
absolute time. By the Poincaré lemma, this implies that locally τ = dt for a function t,
such that the spatial leaves from before are hypersurfaces of constant t, and the time
between two events is the t difference between them.

Construction 1.2. The space metric h defines a positive-definite metric on the distri-
bution of spacelike vectors (i.e. a positive-definite scalar product on spacelike vectors
at any point p ∈ M) in the following way. h|p ∈ Tp M ⊗ Tp M can be interpreted as a
linear map h|p : T∗

p M → Tp M (acting as α 7→ hµν|p αν ∂ν|p). By definition this map has a
one-dimensional kernel spanned by τ|p, and therefore induces an isomorphism

h̃|p : T∗
p M

/
span{τ|p} → im(h|p). (1.4)

On the other hand, we know that the image of h|p consists of spacelike vectors, and for
dimensional reasons it is the whole space of spacelike vectors, i.e. im(h|p) = ker τ|p.
Thus we can identify the space of spacelike vectors with the quotient space on the
left-hand side of (1.4), on which h|p induces a positive-definite scalar product.

Concretely this means that for any two spacelike vectors v, w ∈ ker τ|p ⊂ Tp M, there
are covectors α, β ∈ T∗

p M with vµ = hµναν, wµ = hµνβν, and the scalar product between
v and w is

⟨v, w⟩ = h(α, β) = αµwµ = βµvµ . (1.5)

Here α and β are non-unique up to an addition of multiples of τ|p, which does not
affect the resulting value.

Note that if the spacelike distribution is integrable (i.e. τ ∧ dτ = 0), this means that h
induces a Riemannian metric on each spatial leaf.

3The existence of this filling surface is where we need a topological assumption implying that the two
curves are homotopic.
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1.2. Galilei connections

Definition 1.3. For an (n+ 1)-dimensional Galilei manifold (M, τ, h), we will sometimes
denote the n-dimensional bundle metric induced by h on the spacelike distribution
ker τ by (n)h.

Notation 1.4. When employing index notation for tensor fields on a Galilei manifold, we
will raise indices using h. For example, if we have some tensor field with components
Xµ σ

νρ κ , we use the notation
Xµν σ

ρ κ := hνλXµ σ
λρ κ . (1.6)

Note that since h is degenerate, the operation of raising an index is not invertible, i.e.
differently to the case in (pseudo-)Riemannian geometry we lose information when
doing so.

1.2. Galilei connections

Similarly to the probably familiar case of Riemannian manifolds, we consider connec-
tions (i.e. covariant derivative operators) compatible with the structure of a Galilei
manifold.

1.2.1. Definition and general properties

Definition 1.5. A Galilei connection on a Galilei manifold (M, τ, h) is a linear connection
∇ (i.e. a covariant derivative operator on the tangent bundle) satisfying

∇τ = 0, ∇h = 0. (1.7)

The torsion of the connection will be denoted by T and the curvature tensor by R, i.e.

T(X, Y) := ∇XY −∇YX − [X, Y], (1.8a)

R(X, Y)Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z (1.8b)

for vector fields X, Y, Z. In components, we use the usual index conventions, namely

T(X, Y) = Tρ
µν XµYν∂ρ , (1.9a)

R(X, Y)Z = Rµ
νρσXρYσZν∂µ . (1.9b)

Proposition 1.6. Let ∇ be a Galilei connection on (M, τ, h).

(i) The temporal torsion of ∇ is dτ, i.e. we have τ(T(X, Y)) = dτ(X, Y) for any vectors
(or vector fields) X, Y.
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1. Galilei manifolds

(ii) The curvature tensor of ∇ satisfies τµRµ
νρσ = 0 and Rµν

ρσ = −Rνµ
ρσ.

Proof. (i) Using compatibility of ∇ with τ, for any vector fields X, Y we obtain

τ(T(X, Y)) = τ(∇XY)− τ(∇YX)− τ([X, Y])

= ∇X(τ(Y))−∇Y(τ(X))− τ([X, Y])

= X(τ(Y))− Y(τ(X))− τ([X, Y])

= dτ(X, Y). (1.10)

(ii) Again using compatibility of ∇ with τ, for any vector fields X, Y, Z we have

τ(R(X, Y)Z) = τ(∇X∇YZ)− τ(∇Y∇YZ)− τ(∇[X,Y]Z)

= X(τ(∇YZ))− Y(τ(∇XZ))− [X, Y](τ(Z))

= X(Y(τ(Z)))− Y(X(τ(Z)))− [X, Y](τ(Z))

= 0. (1.11)

Expressed in index notation, this gives the first identity.

The compatibility of ∇ with h leads to the antisymmetry of the curvature tensor in
the first two indices when raised, the details of which we leave as an exercise.

In particular, we see that if dτ ̸= 0, any Galilei connection necessarily has torsion.
Put differently, torsion-free Galilei connections can exist only on Galilei manifolds with
absolute time.

Construction 1.7. We consider the spacelike distribution ker τ. We claim that due

to ∇τ = 0, any Galilei connection ∇ induces a natural connection
(n)

∇ on ker τ by
restriction.

Indeed, given any vector v ∈ TM and spacelike vector field X, the covariant derivative
∇vX is again spacelike: we have τ|p(∇vX) = v(τ(X)) = 0 since X is spacelike.

Additionally, due to ∇h = 0, the induced connection
(n)

∇ is compatible with the spatial
bundle metric (n)h induced by h:

Let X be any vector field and Y, Z be spacelike vector fields. There exist one-forms
α, β such that

Y = h(α, ·), Z = h(β, ·), (1.12)

via which the induced metric is defined by (n)h(Y, Z) = h(α, β) = α(Z) = β(Y). For an
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1.2. Galilei connections

arbitrary one-form κ, (1.12) means that κ(Y) = h(α, κ). Therefore, we can conclude

κ

(
(n)

∇XY
)
= κ(∇XY)

= X(κ(Y))− (∇Xκ)(Y)

= X(h(α, κ))− h(α,∇Xκ)

= h(∇Xα, κ), (1.13)

where in the last step we used ∇h = 0. We thus have shown that
(n)

∇XY = h(∇Xα, ·). (1.14)

Thus, we obtain

X
(
(n)h(Y, Z)

)
= X(α(Z))

= (∇Xα)(Z) + α(∇XZ)

= (∇Xα)(Z) + α

(
(n)

∇XZ
)

= (n)h
(

(n)

∇XY, Z
)
+ (n)h

(
Y,

(n)

∇XZ
)

, (1.15)

which is compatibility of
(n)

∇ with (n)h.

Corollary 1.8. On a Galilei manifold (M, τ, h) with integrable spacelike distribution, i.e.

satisfying τ ∧ dτ = 0, any Galilei connection ∇ induces a metric connection
(n)

∇ on each of the
spatial leaves (which are Riemannian manifolds). In the case of a torsion-free Galilei connection

on a Galilei manifold with absolute time, the induced connections
(n)

∇ are the Levi-Civita
connections of the spatial leaves.

1.2.2. Classification

We now want to classify Galilei connections on a given Galilei manifold (M, τ, h). For
this classification, we fix a vector field v (perhaps only locally defined) that is unit
timelike future-directed4, i.e. satisfies τ(v) = 1. This field we call the reference vector
field, with respect to which we will perform the classification. (Later, we will see that a
possible interpretation of such a vector field is that it gives the directions of reference
observers at each point, but this interpretation will be of no importance for now.)

4We can choose any such vector field, the choice of course being highly non-unique. That such a field
always exists can be seen by, for example, choosing any Riemannian metric on M and using this to
dualise τ into a vector field.
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1. Galilei manifolds

Definition 1.9. The projector onto space along v is the endomorphism of TM defined by

Pµ
ν := δ

µ
ν − vµτν , (1.16a)

or, in index-free notation,
P = id − v ⊗ τ. (1.16b)

Note that even though this projector depends on the choice of v, we will not acknow-
ledge that in the notation, simply to avoid cluttering equations.

One easily shows that Pµ
ν is indeed a projector, its image is the space of spacelike

vectors, and its kernel is pointwise spanned by v, such that the name given to it makes
sense.

With respect to v, we can define a kind of inverse to h:

Definition 1.10. The covariant space metric with respect to v is the symmetric covariant
tensor field

v
h = hµν dxµ ⊗ dxν ∈ Γ(T∗M ⊗ T∗M) defined by

hµνvν = 0, hµνhνρ = Pρ
µ . (1.17)

Note that in index notation, we leave out the subscript v in order to avoid confusion
with an index. An h with indices ‘downstairs’ will always mean the covariant space
metric with respect to that reference vector field v which is clear from context.

Existence and uniqueness of
v
h we can see as follows: at each point p ∈ M, the tangent

and cotangent spaces decompose as

Tp M = span{v|p} ⊕ ker τ|p , (1.18a)

T∗
p M = span{τ|p} ⊕ ker v|p . (1.18b)

Therefore, under the map h|p : T∗
p M → Tp M, each (spacelike) vector in ker τ|p has a

unique preimage in ker v|p (compare construction 1.2). Now due to (1.17), the map

v
h|p : Tp M → T∗

p M needs to vanish on span{v|p}, its image has to lie inside ker v|p, and
on ker τ|p, it has to map each vector to its preimage under h|p in ker v|p. This fixes

v
h|p

uniquely.
Note that this also implies that the metric (n)h induced by h on spacelike vectors may

be expressed as (n)h(w, w̃) =
v
h(w, w̃) for any two spacelike vectors w, w̃ ∈ ker τ|p, i.e.

we have (n)h =
v
h|ker τ.

Construction 1.11. The decomposition of vector fields and one-forms on M according
to the above decomposition of the tangent and cotangent spaces induced by v we call
the decomposition into timelike and spacelike parts with respect to v. Explicitly, for a vector
field X and a one-form α, these decompositions are

Xµ = δ
µ
ν Xν = vµτνXν + Pµ

ν Xν, (1.19a)

αµ = δν
µαν = τµvναν + Pν

µαν , (1.19b)
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1.2. Galilei connections

where the first term is the timelike and the second term the spacelike part with respect
to v. We may also apply this decomposition to higher-degree tensors / tensor fields.

Notation 1.12. In index notation for tensor fields on a Galilei manifold, when a unit
timelike reference vector field v is chosen, we will lower indices using

v
h. For example,

given a tensor field with components Xµ
νρ we will write

Xµνρ := hµλXλ
νρ . (1.20)

Note that first lowering an index (with
v
h) and then raising it again (with h), or vice

versa, corresponds to contracting it with the projector P along v. Therefore, we have to
keep in mind the original position of indices in order not to forget these projections
(except for spacelike indices, for which lowering and raising are actual inverses of each
other).

Notation 1.13. For total symmetrisation and antisymmetrisation of tensors, we will in
the following employ the common notational conventions of enclosing the respective
indices in round or square brackets, respectively; e.g.

X(µν) =
1
2
(Xµν + Xνµ), (1.21a)

X[µ ν]
ρ =

1
2
(Xµ ν

ρ − Xν µ
ρ ). (1.21b)

Enclosed indices which are not to be (anti-)symmetrised will be surrounded by straight
lines, such that for example in the expression X(µνh|ρ|σ), only µ, ν, σ are symmetrised.

Definition 1.14. Consider a Galilei connection ∇ on a Galilei manifold (M, τ, h). The
Newton–Coriolis form5 of ∇ with respect to the unit timelike reference vector field v is
the two-form Ω defined by

Ωµν := 2
(
∇[µvλ

)
hν]λ . (1.22)

Note that the index λ of ∇µvλ is spacelike (due to ∇τ = 0 and ∇µ1 = 0), such that
lowering it with hνλ keeps all information. The antisymmetrisation however leads to Ω
encoding less information than ∇v.

For the classification of Galilei connections, we will need an explicit form for ∇
v
h.

Lemma 1.15. Consider a Galilei manifold (M, τ, h), and a unit timelike reference vector field v
and a Galilei connection ∇ on it. Writing ∇µvν =: Λ ν

µ , the covariant derivative of
v
h is

∇ρhµν = −2Λρ(µτν) . (1.23)
5This name was introduced by Geracie et al. in 2015 [GPR15], after previous authors had either given

the form no name or called it just the ‘Coriolis form’. Since, as we will see later, in a certain sense it
contains the Newtonian potential (and not just the effects of Coriolis forces), they decided to include
the name ‘Newton’.
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1. Galilei manifolds

Proof. We decompose ∇
v
h into its spacelike and its timelike part, namely

∇ρhµν = δσ
µ∇ρhσν

= (Pσ
µ + vστµ)∇ρhσν

= hµλhλσ∇ρhσν + τµvσ∇ρhσν . (1.24)

The timelike part we obtain from

0 = ∇ρ(vσhσν) = Λ σ
ρ hσν + vσ∇ρhσν = Λρν + vσ∇ρhσν , (1.25a)

and the spacelike one from

0 = ∇ρδλ
ν = ∇ρ(Pλ

ν + vλτν) = ∇ρ(hλσhσν) + Λ λ
ρ τν = hλσ∇ρhσν + Λ λ

ρ τν , (1.25b)

where we have used ∇τ = 0, ∇h = 0. Inserting these into (1.24), we obtain (1.23).

Theorem 1.16 (Classification of Galilei connections). Let (M, τ, h) be a Galilei manifold
and v a unit timelike reference vector field on it.

(i) Let ∇ be a Galilei connection on (M, τ, h), and let Ω be the Newton–Coriolis form of ∇
with respect to v. Then the connection coefficients of ∇ take the form

Γρ
µν = vρ∂(µτν) +

1
2

hρσ(∂µhνσ + ∂νhµσ − ∂σhµν) +
1
2

Tρ
µν − T ρ

(µν)
+ τ(µΩ ρ

ν) . (1.26)

(ii) Conversely, given any two-form Ω and any tensor field T satisfying

Tρ
µν = −Tρ

νµ , τρTρ
µν = (dτ)µν , (1.27)

equation (1.26) defines a Galilei connection on (M, τ, h), whose torsion and Newton–
Coriolis form with respect to v are the given T and Ω, respectively.

Proof. (i) For any three vector fields X, Y, Z, by applying the Leibniz rule and the
definition of the torsion we have

v
h(∇XY, Z) = X

(
v
h(Y, Z)

)
−

(
∇X v

h
)
(Y, Z)−

v
h(Y,∇XZ︸ ︷︷ ︸

=∇ZX+[X,Z]+T(X,Z)

)

= X
(

v
h(Y, Z)

)
−

(
∇X v

h
)
(Y, Z)−

v
h(Y,∇ZX)−

v
h(Y, T(X, Z) + [X, Z]).

(1.28a)
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1.2. Galilei connections

Cyclicly permuting the vector fields, from this we obtain

v
h(∇YZ, X) = Y

(
v
h(Z, X)

)
−

(
∇Y v

h
)
(Z, X)−

v
h(Z,∇XY)−

v
h(Z, T(Y, X) + [Y, X]),

(1.28b)

v
h(∇ZX, Y) = Z

(
v
h(X, Y)

)
−

(
∇Z v

h
)
(X, Y)−

v
h(X,∇YZ)−

v
h(X, T(Z, Y) + [Z, Y]).

(1.28c)

Considering (1.28a) + (1.28b) − (1.28c) now yields

2
v
h(∇XY, Z) = X

(
v
h(Y, Z)

)
+ Y

(
v
h(Z, X)

)
− Z

(
v
h(X, Y)

)
−

(
∇X v

h
)
(Y, Z)−

(
∇Y v

h
)
(Z, X) +

(
∇Z v

h
)
(X, Y)

−
v
h(Y, T(X, Z) + [X, Z])−

v
h(Z, T(Y, X) + [Y, X])

+
v
h(X, T(Z, Y) + [Z, Y]). (1.29)

Applied to the coordinate vector fields X = ∂µ, Y = ∂ν, Z = ∂σ, this gives

hσλΓλ
µν =

1
2
(∂µhνσ + ∂νhσµ − ∂σhµν) + Λµ(ντσ) + Λν(στµ) − Λσ(µτν)

+
1
2
(−Tνµσ − Tσνµ + Tµσν). (1.30)

Here we have used lemma 1.15 to express ∇
v
h in terms of ∇v, again writing

∇µvν =: Λ ν
µ .

Equation (1.30) gives us an expression for the spacelike part of the connection
coefficients. The timelike part we obtain from the compatibility ∇τ = 0, which in
components reads 0 = ∂µτν − Γλ

µντλ. Combining those, we obtain

Γρ
µν = (vρτλ + hρσhσλ)Γλ

µν

= vρ∂µτν +
1
2

hρσ(∂µhνσ + ∂νhµσ − ∂σhµν) +
1
2

hρσ(Tσµν − Tνµσ − Tµνσ)

+ hρσ(Λµ(ντσ) + Λν(στµ) − Λσ(ντµ))

= vρ∂µτν +
1
2

hρσ(∂µhνσ + ∂νhµσ − ∂σhµν) +
1
2

Pρ
λTλ

µν − T ρ

(µν)

+ hρσ(Λ(µ|σ|τν) − Λσ(µτν)) . (1.31)

Considering the first torsion term, we note that due to the temporal torsion being
dτ (proposition 1.6 (i)), we can write

1
2

Pρ
λTλ

µν =
1
2

Tρ
µν − 1

2
vρ τλTλ

µν︸ ︷︷ ︸
=(dτ)µν=2∂[µτν]

=
1
2

Tρ
µν − ∂[µτν] . (1.32)

9



1. Galilei manifolds

Finally, the definition of the Newton–Coriolis form is Ωµσ = 2Λ[µσ] = Λµσ − Λσµ,
such that we may rewrite

hρσ(Λ(µ|σ|τν) − Λσ(µτν)) = hρσΩ(µ|σ|τν) = Ω ρ
(µ τν) = τ(µΩ ρ

ν) . (1.33)

Inserting (1.32) and (1.33) into (1.31), we obtain the connection coefficients as
stated in the theorem.

(ii) The proof that (1.26) defines a Galilei connection is covered in detail in an exercise
on the first exercise sheet. Its torsion being the given T is obvious (consider 2Γρ

[µν]
).

That its Newton–Coriolis form is the given Ω requires some calculation, which
we also leave as an exercise.

Corollary 1.17. On a Galilei manifold with absolute time, the torsion-free Galilei connections
are classified by their respective Newton–Coriolis forms (with respect to a choice of unit timelike
reference vector field).

Note that this is different from the case of (pseudo-)Riemannian manifolds, where
the metric-compatible connections are classified by their torsion and therefore there is
a unique torsion-free connection, the Levi-Civita connection.

Definition 1.18. Any change from one unit timelike reference vector field to another
has the form

vµ → ṽµ = vµ − kµ (1.34)

for a spacelike vector field k. Such a change of reference field is called a Milne boost.

Proposition 1.19. Under a Milne boost (1.34), the projector P, the covariant space metric
v
h

and the Newton–Coriolis form (of some fixed Galilei connection) with respect to the reference
vector field transform according to

P → P̃ = P + k ⊗ τ, (1.35a)

v
h →

ṽ
h =

v
h + k♭ ⊗ τ + τ ⊗ k♭ + k2τ ⊗ τ, (1.35b)

Ω → Ω̃ = Ω − dk♭ − 1
2

d(k2) ∧ τ +
v
h(k, T(·, ·)), (1.35c)

where k♭ =
v
h(k, ·) is the one-form associated to k via

v
h, and k2 = (n)h(k, k) is the squared

length of k. Written in components, the above formulae read

Pµ
ν → Pµ

ν + kµτν , (1.36a)

hµν → hµν + kµτν + τµkν + k2τµτν , (1.36b)

Ωµν → Ωµν − 2∂[µkν] − (∂[µk2)τν] + kρTρ
µν , (1.36c)

where the index on kµ has been lowered with
v
h.
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1.2. Galilei connections

Proof. The transformation behaviour of the projector follows directly from its definition.
For the covariant space metric and the Newton–Coriolis form, some calculation has to
be done, which we leave as an exercise (see exercise sheet 2).

At this point, the transformation behaviour of
v
h and Ω under Milne boosts seems to

appear ‘out of the blue’. Later, we will see how to actually derive it.
Finally, we want to introduce bases of the tangent space that are adapted to the

structure of a Galilei manifold.

Definition 1.20. Let (M, τ, h) be a Galilei manifold. A Galilei basis at a point p ∈ M is
an (ordered) basis (eA) = (et, ea), a = 1, . . . , n, of the tangent space Tp M such that

(i) for the dual basis (eA) = (et, ea) of T∗
p M, we have et = τ|p, and

(ii) h|p = δabea ⊗ eb, i.e. in components hµν|p = δabeµ
a eν

b .

By definition of a Galilei manifold, the second condition implies that the vectors ea

are spacelike: we have 0 = h|p(τ, ·) = δabτ(ea)eb, which implies τ(ea) = 0.

Proposition 1.21. In the definition of a Galilei basis, condition (i) may be replaced by the
following:

(i’) et is a future-directed unit timelike vector.

Similarly, as long as (i) is kept, condition (ii) may be replaced by the following:

(ii’) The ‘spacelike’ elements ea of the dual basis (eA) = (et, ea) are orthonormal with respect
to h, i.e. we have h(ea, eb) = δab.

Proof. Given a basis satisfying the original conditions, by the definition of the dual
basis, we have τ(et) = et(et) = 1, i.e. et is future-directed unit timelike. Conversely,
given (i’) and (ii), we have τ(et) = 1 and τ(ea) = 0, which implies τ|p = et, i.e. (i).

Now for (ii’). Given a basis satisfying (i) and (ii), the definition of the dual basis gives
us h(ea, eb) = δcd(ec ⊗ ed)(ea, eb) = δcdδa

c δb
d = δab. Conversely, given (i) and (ii’), we have

0 = h(τ|p, ·) = h(et, ·), such that h is given by h|p = h(ea, eb)ea ⊗ eb = δabea ⊗ eb.

Note that together with et = τ|p, condition (ii’) means that the dual basis is a
Sylvester basis for h|p. Also note that (i’) and (ii’) together are weaker than the original
conditions, i.e. they do not characterise a Galilei basis.

Also directly from the definition of the dual basis, we obtain the following:

Proposition 1.22. Let (M, τ, h) be a Galilei manifold and (eA) a Galilei basis at p ∈ M.

11



1. Galilei manifolds

(i) The projector onto space6 along et can be expressed as

Pµ
ν = eµ

a ea
ν (1.37a)

or, in index-free notation,
P = ea ⊗ ea. (1.37b)

(ii) The covariant space metric with respect to et can be expressed as

hµν = δabea
µeb

ν (1.38a)

or, in index-free notation,

et
h = δabea ⊗ eb. (1.38b)

Proof. (i) The definition of the dual basis can be expressed in the form idTp M =

eA ⊗ eA = et ⊗ et + ea ⊗ ea. By the definition of the projector, the result follows.

(ii) Contracting δabea
µeb

ν with eµ
t and with hνρ, we obtain

δabea
µeb

νeµ
t = 0 (1.39)

and

δabea
µeb

νhνρ = δabea
µeb

νδcdeν
c eρ

d = δabea
µδb

c δcdeρ
d = ea

µeρ
a = Pρ

µ , (1.40)

i.e. we have shown the defining properties of the covariant space metric.

1.2.3. Newtonian connections

Consider a Galilei manifold with absolute time, and a torsion-free Galilei connection on
it. We want to count the number of algebraically independent components of the con-
nection’s curvature tensor (at any point), and compare this to the (pseudo-)Riemannian
case.

Recall that for the Levi-Civita connection of an n-dimensional (pseudo-)Riemannian
manifold, the (Riemannian) curvature tensor has n2(n2−1)

12 independent components.
Since the curvature tensor of a Galilei connection has less symmetries than in the
Riemannian case, it has more independent components:

6We have only defined this projector for unit timelike vector fields, but of course the definition also works
just at a single point. The same goes for the covariant space metric.
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1.2. Galilei connections

Proposition 1.23. Let (M, τ, h) be an (n + 1)-dimensional Galilei manifold with absolute time,
and ∇ a torsion-free Galilei connection on it. At any point of M, the number of algebraically
independent components of the curvature tensor of ∇ is

n2(n + 1)(n + 5)
12

=
(n + 1)2((n + 1)2 − 1)

12
+

n(n2 − 1)
6

, (1.41)

i.e. n(n2−1)
6 more than that for an (n + 1)-dimensional (pseudo-)Riemannian manifold.

Proof. The first index of the curvature tensor is spacelike (proposition 1.6 (ii)),

τµRµ
νρσ = 0. (1.42a)

Furthermore, the curvature tensor has the following symmetries: it is antisymmetric in
its last two indices,

Rµ
νρσ = −Rµ

νσρ , (1.42b)

antisymmetric in its first two indices when the second is raised (proposition 1.6 (ii)),

Rµν
ρσ = −Rνµ

ρσ , (1.42c)

and due to vanishing torsion satisfies the Bianchi identity

Rµ

[νρσ]
= 0. (1.42d)

Due to antisymmetry in the last two indices, the Bianchi identity can also be stated as
the vanishing of the cyclic sum over the last three indices,

Rµ
νρσ + Rµ

ρσν + Rµ
σνρ = 0. (1.42e)

We now focus on a single point p ∈ M and want to analyse these symmetries in a
Galilei basis (eA) = (et, ea) of Tp M. The first three symmetries (1.42) of the curvature
then take the form

Rt
νρσ = 0, (1.43a)

Raνρσ = Raνρσ , (1.43b)

Rabρσ = −Rbaρσ , (1.43c)

where we have lowered the first index with δab when it is spacelike.
The purely spatial part Rabcd of the curvature tensor now has precisely the symmetries

of the curvature tensor of an n-dimensional Riemannian manifold (in fact, it is the
Riemannian curvature of the spatial leaves), so it has n2(n2−1)

12 independent components.
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1. Galilei manifolds

(Note that the ‘symmetry in pairs’ Rabcd = Rcdab follows from the Bianchi identity and
the antisymmetries.)

Thus, we still need to count the number of independent mixed temporal-spatial
components of the curvature, which have the form Raνρσ = −Raνσρ with at least one
of the indices ν, ρ, σ being t. On the one hand, this includes components of the form
Ratρσ. For those, we have n independent choices for the value of a, and (n+1)n

2 choices
for the antisymmetric pair ρσ; thus these are n · (n+1)n

2 independent components. On
the other hand, we have the components Rabtc. Here for the antisymmetric pair ab, we
have n(n−1)

2 choices, and n choices for c, meaning those give us n(n−1)
2 · n independent

components.
In the above counting, we have however not yet taken the Bianchi identity into

account, which tells us that Ratρσ + (cyclic terms in t, ρ, σ) = 0. This is a non-trivial
requirement (i.e. one which does not follow from the already considered symmetries)
for either all four indices being different, or for one of ρ, σ being a. The former case
gives n · (n−1

2 ) equations (n choices for a, then two values ρ, σ from the remaining

n − 1); the latter amounts to 0 = Ratab +���* 0
Raabt + Rabta, which are n(n − 1) independent

equations.
Combining everything, the number of independent components of the curvature

tensor at p is

n2(n2 − 1)
12︸ ︷︷ ︸

Rabcd

+ n · (n + 1)n
2︸ ︷︷ ︸

Ratρσ

+
n(n − 1)

2
· n︸ ︷︷ ︸

Rabtc

− n ·
(

n − 1
2

)
− n(n − 1)︸ ︷︷ ︸

Bianchi

, (1.44)

which by a little calculation can be shown to be equal to the number given in (1.41).

We now want to introduce a requirement on the curvature that reduces the number
of independent components to as many as in the (pseudo)-Riemannian case. The
only symmetry holding in the (pseudo-)Riemannian case but absent above was the
‘symmetry in pairs’ for the mixed temporal-spatial curvature components.

Definition 1.24. A Newtonian connection on a Galilei manifold (M, τ, h) with absolute
time is a torsion-free Galilei connection whose curvature tensor satisfies the additional
symmetry

Rµ ν
ρ σ = Rν µ

σ ρ . (1.45)

A Newtonian manifold is a Galilei manifold with absolute time with a Newtonian
connection on it.
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1.2. Galilei connections

Theorem 1.25. The number of algebraically independent components of the curvature tensor of
an (n + 1)-dimensional Newtonian manifold is

(n + 1)2((n + 1)2 − 1)
12

, (1.46)

as for an (n + 1)-dimensional (pseudo-)Riemannian manifold.

Proof. In a Galilei basis, the additional symmetries introduced by the condition of being
Newtonian read

Ratbt = Rbtat for a ̸= b, (1.47a)

Ratbc = Rbcat for a, b, c all different (1.47b)

(for a = b, the second one follows from the Bianchi identity). The first case gives us (n
2)

equations, and the second one (n
3). Together, these are(

n
2

)
+

(
n
3

)
=

n(n − 1)
2

+
n(n − 1)(n − 2)

6
=

n(n − 1)(n + 1)
6

=
n(n2 − 1)

6
(1.48)

additional requirements for the curvature, which reduces the number of components
from (1.41) to the (pseudo-)Riemannian value.

The condition of a Galilei connection being Newtonian can be related to its Newton–
Coriolis form:

Lemma 1.26. Let (M, τ, h) be a Galilei manifold with absolute time, ∇ be a torsion-free Galilei
connection on it, and Ω be its Newton–Coriolis form with respect to any unit timelike reference
vector field. Then the curvature tensor of ∇ satisfies

Rµ ν
ρ σ − Rν µ

σ ρ = (dΩ)µν
(ρτσ) . (1.49)

Proof. We denote the reference vector field by v, and its covariant derivative by ∇v =: Λ.
Then the definition of Ω reads Ωµν = 2Λ[µν]. Due to torsion-freeness, we can thus
express the exterior derivative as

(dΩ)µνρ = 3 ∂[µΩνρ]

= 3(∇[µΩνρ] + Γλ
[µν︸︷︷︸
= 1

2 Tλ
[µν

=0

Ω|λ|ρ] + Γλ
[µρ︸︷︷︸
= 1

2 Tλ
[µρ

=0

Ων]λ)

= 6∇[µΛνρ] . (1.50)
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1. Galilei manifolds

Now in general, for any torsion-free connection and any one-form α, we have the
identity

2∇[µ∇ν]αρ = −Rλ
ρµναλ (1.51)

(with torsion, we would have an additional −Tλ
µν∇λαρ on the right-hand side). Apply-

ing this to a tensor product αρβσ, we obtain

2∇[µ∇ν](αρβσ) = 2(∇[µ∇ν]αρ)βσ + 2αρ∇[µ∇ν]βσ

= −Rλ
ρµναλβσ − Rλ

σµναρβλ . (1.52)

Since the covariant space metric hρσ may be decomposed as a sum of tensor products
of one-forms, we obtain

∇[µ∇ν]hρσ = −hλ(ρRλ
σ)µν , (1.53)

which with lemma 1.15 takes the form

R(ρσ)µν = 2∇[µΛν](ρτσ) . (1.54)

Contracting this with 6vσ and antisymmetrising in ρ, µ, ν, we obtain

3R[ρ|σ|µν]v
σ = 6∇[µΛνρ] + 6τ[ρ∇µΛν]σvσ. (1.55)

Due to

∇[µΛν]σvσ = ∇[µ(Λν]σvσ︸ ︷︷ ︸
=Λν]

κhκσvσ=0

)− Λ[ν|σ|∇µ]v
σ

= −Λ[ν|σ|Λ
σ

µ]

= −1
2
(ΛνσΛ σ

µ − ΛµσΛ σ
ν ) = 0 (1.56)

and (1.50), we thus arrive at

(dΩ)µνρ = 3R[ρ|λ|µν]v
λ

= (Rρλµν + Rµλνρ + Rνλρµ)vλ, (1.57)

where we have used antisymmetry of the curvature in the last two indices to rewrite
the antisymmetrisation as a cyclic sum. Now using the Bianchi identity, we can rewrite
the first and second terms on the right-hand side of (1.57) as

Rρλµν = −Rρµνλ − Rρνλµ , (1.58a)

Rµλνρ = −Rµνρλ − Rµρλν . (1.58b)

16



1.2. Galilei connections

By decomposing the second index of R into its space- and timelike parts, we obtain
the identity

R(µν)ρσ = (Pκ
(ν + vκτ(ν)Rµ)κρσ

= hλ(µh|κ|ν)R
λκ

ρσ + vκτ(νRµ)κρσ

= hλµhκν R(λκ)
ρσ︸ ︷︷ ︸

=0

+vκτ(νRµ)κρσ

= vκτ(µRν)κρσ , (1.59)

where we used antisymmetry of the spacelike part of the first two indices of the
curvature tensor (proposition 1.6 (ii)). Using this identity, we can rewrite both terms on
the right-hand side of (1.58a) and the first term on the right-hand side of (1.58b) as

−Rρµνλ = Rµρνλ − 2vκτ(ρRµ)κνλ , (1.60a)

−Rρνλµ = Rνρλµ − 2vκτ(ρRν)κλµ , (1.60b)

−Rµνρλ = Rνµρλ − 2vκτ(µRν)κρλ . (1.60c)

Using (1.58) and (1.60) in (1.57), we obtain

(dΩ)µνρ = (Rµρνλ + Rνρλµ + Rνµρλ︸ ︷︷ ︸
=−Rνλµρ

−Rµρλν + Rνλρµ

− 2vκτ(ρRµ)κνλ − 2vκτ(ρRν)κλµ − 2vκτ(µRν)κρλ)v
λ

= (2Rµρνλ − 2Rνλµρ − 2vκτ(ρRµ)κνλ + 2vκτ(ρRν)κµλ − 2vκτ(µRν)κρλ)v
λ, (1.61)

where we have used the Bianchi identity and antisymmetry in the last two indices to
combine some terms. Raising µ and ν in this equation, we get

(dΩ)
µν

ρ = (2Rµ ν
ρ λ − 2Rν µ

λ ρ − vκτρRµ ν
κ λ + vκτρRν µ

κ λ)v
λ

= (Rµ ν
κ λ − Rν µ

λ κ)︸ ︷︷ ︸
=:Mµ ν

κ λ

(2δκ
ρ − vκτρ)vλ

= Mµ ν
κ λ(δ

κ
ρ + Pκ

ρ )v
λ. (1.62)

Due to antisymmetry of dΩ, from this we also obtain

(dΩ)
µν

σ = −(dΩ)
νµ

σ
(1.62)
= −Mν µ

κ λ(δ
κ
σ + Pκ

σ)v
λ = Mµ ν

λ κ(δ
κ
σ + Pκ

σ)v
λ = Mµ ν

κ λ(δ
λ
σ + Pλ

σ )v
κ,

(1.63)
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1. Galilei manifolds

where we have used the definition of M in the second last step and renamed contracted
indices in the last step. Now multiplying (1.62) with τσ and (1.63) with τρ, we get the
two equations

(dΩ)
µν

ρτσ = Mµ ν
κ λ(δ

κ
ρ + Pκ

ρ )(δ
λ
σ − Pλ

σ ), (1.64a)

(dΩ)
µν

στρ = Mµ ν
κ λ(δ

κ
ρ − Pκ

ρ )(δ
λ
σ + Pλ

σ ). (1.64b)

Adding these and dividing by 2, we arrive at

(dΩ)µν
(ρτσ) = Mµ ν

κ λ(δ
κ
ρδλ

σ − Pκ
ρ Pλ

σ )

= Mµ ν
ρ σ − Mµκνλhρκhσλ. (1.65)

Due to symmetry in pairs of the purely spacelike part of the curvature tensor, we have
Mµκνλ = 0, and the proof is finished.

Theorem 1.27. A torsion-free Galilei connection is Newtonian iff its Newton–Coriolis form
with respect to any unit timelike reference vector field (and then all such fields) is closed.

Proof. If dΩ = 0, then by lemma 1.26 the connection is Newtonian. Conversely, if it is
Newtonian, we have (dΩ)µν

(στρ) = 0. This implies (dΩ)µνσ = 0, i.e. vanishing of the
purely spacelike part of dΩ, and (dΩ)

µν
σvσ = 0 for the timelike reference field v. Due

to the antisymmetry of dΩ, this implies dΩ = 0.

Construction 1.28. According to construction 1.7 and corollary 1.8, a torsion-free Galilei
connection ∇ on a Galilei manifold (M, τ, h) with absolute time restricts on each spatial

leaf to the Levi-Civita connection
(n)

∇ of the induced Riemannian metric (n)h.
Therefore, we can restrict the curvature tensor of ∇ to each of the spatial leaves, and

when doing so, we obtain the curvature tensor (n)R of the spatial leaf as a Riemannian
manifold: for any spatial leaf Σ and vector fields X, Y, Z ∈ Γ(TΣ), on Σ we have

R(X, Y)Z = ∇X ∇YZ︸ ︷︷ ︸
=
(n)
∇Y Z

−∇Y ∇XZ︸ ︷︷ ︸
=
(n)
∇X Z

−∇[X,Y]Z

=
(n)

∇X
(n)

∇YZ −
(n)

∇Y

(n)

∇XZ −
(n)

∇[X,Y]Z

= (n)R(X, Y)Z (1.66)

(where of course to be able to apply ∇, we have to extend X, Y, Z to vector fields in a
neighbourhood of Σ in M in some way, the choice of which does not affect the results
when restricted to Σ).
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1.2. Galilei connections

Furthermore, when restricting the Ricci tensor Ric of ∇ to any spatial leaf, we obtain
the Ricci tensor (n)Ric of the leaf as a Riemannian manifold: for any two spacelike
vectors v, w ∈ ker τ|p, we have7

(n)Ric(v, w) = tr ker τ|p

(
(n)R(·, w)v

)
= tr ker τ|p(R(·, w)v)

(τµRµ
νρσ = 0) = tr Tp M(R(·, w)v)

= Ric(v, w). (1.67)

Definition 1.29. A Galilei manifold with absolute time is spatially flat iff each of the
spatial leaves foliating M is flat (as a Riemannian manifold).

Note that due to the preceding construction, spatial flatness is equivalent to vanishing
of the purely spatial part of the curvature tensor of any torsion-free Galilei connection,
i.e. to the curvature satisfying

Rµνρσ = 0. (1.68)

7In index notation in a Galilei basis, the calculation takes the form (n)Rabvawb = (n)Rc
acdvawb =

Rc
acbvawb = Rµ

aµbvawb = Rµνvµwν.
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2. Classical Newton–Cartan gravity

In this chapter, we will use the language of Galilei manifolds and connections developed
previously to introduce and discuss ‘classical’ Newton–Cartan gravity, i.e. the version
of the theory presented by Künzle [Kün76], Ehlers [Ehl81] and Malament [Mal12]. We
will see how to recover the usual formulation of Newtonian gravity, and explore the
connection to GR.

2.1. Formulation of the theory and general consequences

Axioms 2.1 (Axioms for Newton–Cartan gravity). Newton–Cartan gravity may be
characterised as follows (compare GR!).

(i) Spacetime is a Newtonian manifold (M, τ, h,∇),

(ii) ideal clocks measure time as defined by τ, and ideal rods measure spatial lengths
as defined by the metric (n)h induced by h on spacelike vectors,

(iii) free test particles move on timelike geodesics of ∇, and

(iv) the Newton–Cartan field equation

Rµν = 4πGρτµτν (2.1)

holds, where Rµν are the components of the Ricci tensor of ∇, G is the gravitational
constant, and ρ is the mass density.

Theorem 2.2. Any (3 + 1)-dimensional Galilei manifold with absolute time with a torsion-free
Galilei connection satisfying the Newton–Cartan field equation is spatially flat.

Proof. The field equation implies that the Ricci tensor vanishes on spacelike vectors.
According to construction 1.28, this means that all spacelike leaves are Ricci-flat. Since
they are 3-dimensional, this implies that they are flat as Riemannian manifolds.
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2. Classical Newton–Cartan gravity

For analysing timelike geodesics of ∇ (i.e. the worldlines of freely falling test
particles), the following result is helpful.

Proposition 2.3. Let (M, τ, h) be a Galilei manifold with absolute time, and ∇ a Galilei
connection on it. Absolute time t as defined by τ (i.e. any local function t such that τ = dt) is
an affine parameter for all timelike geodesics of ∇.

Proof. Let γ(λ) be any affinely parametrised geodesic of ∇, i.e. ∇γ′(λ)γ
′(λ) = 0. This

implies ∇γ′(λ)(τ(γ
′(λ))) = (∇γ′(λ)τ)(γ

′(λ)) + τ(∇γ′(λ)γ
′(λ)) = 0, i.e. that τ(γ′) =: A

is constant along γ. Therefore, we have

t(γ(λ f ))− t(γ(λi)) =
∫ λ f

λi

dλ τ(γ′(λ)) = (λ f − λi)A, (2.2)

i.e. absolute time t is affinely related to λ and therefore an affine parameter itself.

Notation 2.4. Unless otherwise specified, we will from now on parametrise all timelike
curves by absolute time, i.e. such that τ(γ̇) = 1.

2.2. Recovering Newtonian gravity

In this section, we will show how to recover the usual coordinate formulation of
Newtonian gravity from the geometric framework of Newton–Cartan gravity.

2.2.1. Kinematics of timelike vector fields

In the following, let (M, τ, h) be a Galilei manifold with absolute time and ∇ a torsion-
free Galilei connection on it.

Interpretation 2.5. Consider a timelike curve γ that we interpret as the worldline of
an observer. A spacelike vector field w along γ which is parallel with respect to ∇,
i.e. ∇γ̇w = 0, has the interpretation of defining a non-rotating spacelike vector of constant
length from the point of view of the observer moving along γ. (On exercise sheet 3,
we will see why this is a sensible notion of a ‘non-rotating’ spacelike vector from the
observer’s point of view.)

Definition 2.6. Let (M, τ, h) be a Galilei manifold with absolute time, and ∇ a torsion-
free Galilei connection on it. For any unit timelike vector field v, i.e. τ(v) = 1, we
define its acceleration

α := ∇vv (2.3a)
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2.2. Recovering Newtonian gravity

(timelike part of ∇v), and we decompose the spacelike part ∇µvν of ∇v into its
antisymmetric part

ωµν := ∇[µvν], (2.3b)

the twist of v, its trace

θ := hρσ∇ρvσ = ∇ρvρ, (2.3c)

the expansion of v, and its symmetric traceless part

σµν := ∇(µvν) − 1
n

θhµν, (2.3d)

the shear of v, where n = dim M − 1.

In terms of those, ∇v can be decomposed as

∇µvν = τµαν + ω ν
µ + σ ν

µ +
1
n

θPν
µ , (2.4)

and the Newton–Coriolis form of ∇ with respect to v is

Ωµν = 2τ[µαν] + 2ωµν . (2.5)

Interpretation 2.7. Let v be a unit timelike vector field, and imagine that it describes
the flow of a fluid through spacetime, i.e. its flow lines are the worldlines of the fluid
particles. A spacelike1 vector field η satisfying Lvη = 0 is transported along the flow
of v, i.e. when evaluated along one fixed flow line γ of v, it may be interpreted as
the direction from γ to an ‘infinitesimally close’ flow line over the course of time; see
figure 2.1.

Now since ∇ is torsion-free, we have 0 = Lvη = [v, η] = ∇vη −∇ηv. This implies

vµ∇µην = ηµ∇µvν

(2.4)
= ηµ

(
ω ν

µ + σ ν
µ +

1
n

θPν
µ

)
= −ων

µηµ + σν
µ ηµ +

1
n

θην. (2.6a)

Evaluated along a fixed flow line γ, this gives

∇γ̇η = −ω(η) + σ(η) +
1
n

θη, (2.6b)

1Being everywhere spacelike is compatible with Lvη = 0: due to Cartan’s magic formula, we have
Lvτ = d(τ(v)) + dτ(v, ·) = 0, which implies Lv(τ(η)) = τ(Lvη) = 0, i.e. τ(η) is constant along the
flow of v.

23



2. Classical Newton–Cartan gravity

γ

γ̃

η

η

η

Figure 2.1.: Two flow lines γ, γ̃ of a timelike vector field, and the evolution of the
connecting vector η to an ‘infinitesimally close’ flow line along γ

where we treat, at each point, ω and σ as linear maps on the space of spacelike vectors.
This means that the evolution of the ‘infinitesimal connecting vector’ η along γ, as

compared to a non-rotating frame, is at each point in time generated by the linear map
−ω + σ + 1

n θ id. Since with respect to the metric (n)h on space ω is antisymmetric and σ

is symmetric traceless, ω generates a rotational motion and σ generates a rotation-free
volume-preserving motion2.

Thus ω gives the rate at which ‘infinitesimally close’ fluid particles / flow lines rotate
around each other, σ describes how their shape is deformed in a volume-preserving
way, and θ is the rate at which the volume of an infinitesimal ‘ball’ of fluid particles
increases.

Proposition 2.8. Let (M, τ, h) be a Galilei manifold with absolute time, ∇ a torsion-free Galilei
connection on it, and v any vector field on M. Then the Lie derivative of h in direction of v is
given by (Lvh)µν = −2∇(µvν).

Proof. For any one-form α and any vector field X, we have

(Lvα)(X) = v(α(X))︸ ︷︷ ︸
=(∇vα)(X)+α(∇vX)

− α(LvX︸︷︷︸
=[v,X]=∇vX−∇Xv

)

= (∇vα)(X) + α(∇Xv). (2.7)

2The infinitesimal version of an actual shear in the geometric sense combines this with a rotation.
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2.2. Recovering Newtonian gravity

In index notation, this reads (Lvα)ρ = vµ∇µαρ + αµ∇ρvµ. This implies, for one-forms
α, β, that

h(Lvα, β) = h(∇vα, β) + αµ (∇ρvµ)hρν︸ ︷︷ ︸
=∇νvµ

βν , (2.8)

from which we obtain

(Lvh)(α, β) = v(h(α, β))︸ ︷︷ ︸
=h(∇vα,β)+h(α,∇vβ)

− h(Lvα, β)− h(α,Lvβ)

(2.8)
= −αµ(∇νvµ)βν − βµ(∇νvµ)αν

= −2∇(µvν)αµβν . (2.9)

For (unit) timelike v, this matches intuition: ∇(µvν) consists of shear and expansion,
i.e. encodes (according to interpretation 2.7) the deformation of spatial geometry along
the flow of v, which on the other hand is described by the change of the spatial metric
(n)h along the flow of v (the minus sign comes from inverting h to get (n)h). Note also
that this implies that ∇v is determined by Lvh and the Newton–Coriolis form Ω.

Definition 2.9. Let (M, τ, h) be a Galilei manifold with absolute time. A timelike vector
field v is rigid iff Lvh = 0, i.e. iff spatial geometry is constant along its flow.

Proposition 2.10. Let (M, τ, h) be a Galilei manifold with absolute time, and ∇ a torsion-free
Galilei connection on it. For any vector field v with ∇(µvν) = 0, we have

∇ρ∇µvν = −Rµνρ
σvσ. (2.10)

Proof. Due to vanishing torsion, we have the Ricci identity

2∇[µ∇ν]v
ρ = Rρ

σµνvσ. (2.11)

Raising µ, ν and cycling indices, we obtain

2∇[µ∇ν]vρ = Rρ µν
σ vσ, (2.12a)

2∇[ν∇ρ]vµ = Rµ νρ
σ vσ, (2.12b)

2∇[ρ∇µ]vν = Rν ρµ
σ vσ. (2.12c)
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2. Classical Newton–Cartan gravity

Adding the last two equations and subtracting the first, we get

−2∇µ∇(νvρ) + 2∇ν∇(ρvµ) + 2∇ρ∇[µvν] = (−Rρ µν
σ + Rµ νρ

σ + Rν ρµ
σ )vσ

= (���Rρµν
σ +

H
HHRρν µ

σ

− Rµνρ
σ −���Rµρ ν

σ

−HHHRνρµ
σ − Rνµ ρ

σ )vσ

= −2Rµνρ
σvσ, (2.13)

where we have used the Bianchi identity and the antisymmetries of the curvature tensor.
Due to ∇(µvν) = 0, we are finished.

Corollary 2.11. Let v be a rigid unit timelike vector field on a Galilei manifold with absolute
time with a torsion-free Galilei connection ∇. The twist ω of v satisfies

∇ρωµν = −Rµνρ
σvσ. (2.14)

2.2.2. Künzle–Ehlers recovery

Here, we will step by step show how to recover a slight generalisation of usual Newto-
nian gravity from Newton–Cartan gravity. We aim at the formulation of this recovery
theorem as given by Malament [Mal12], but we try to provide a more differential-
geometric proof.

Let again (M, τ, h) be a Galilei manifold with absolute time, ∇ a torsion-free Galilei
connection on it, and v a unit timelike vector field.

Notation 2.12. (i) Let (N, g) be a (pseudo-)Riemannian manifold. For a k-form
β ∈ Ωk(N), we write

(δβ)µ1...µk−1 := −∇̃ρβρµ1 ...µk−1 , (2.15)

where ∇̃ is the Levi-Civita connection of g. The operator δ : Ωk(N) → Ωk−1(N)

is called the codifferential3.

3δ is formally adjoint to the exterior derivative d, i.e. satisfies

1
k!

∫
N

volg αµ1 ...µk (dβ)µ1 ...µk =
1

(k − 1)!

∫
N

volg (δα)µ1 ...µk−1 βµ1 ...µk−1 (2.16)

for any k-form α and (k − 1)-form β with compact support.
The codifferential may also be expressed in terms of the exterior derivative d and the Hodge star

operator with respect to g, but we will use only (2.15) instead, i.e. ‘codifferential is minus covariant
divergence’. This also saves us from a lot of trouble regarding sign conventions for the Hodge operator.
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2.2. Recovering Newtonian gravity

(ii) For any spatial leaf Σ of our Galilei manifold (M, τ, h) with absolute time, we
will denote by (n)δ the codifferential of the Riemannian manifold (Σ, (n)h).

Proposition 2.13. Consider a k-form β and a (k − 1)-form κ on M that are purely spacelike
with respect to v.

(i) The equation
−∇ρβρµ1 ...µk−1 = κµ1 ...µk−1 (2.17)

is equivalent to
(n)δ(β|Σ) = κ|Σ on all spatial leaves Σ. (2.18)

(ii) The equation
k∇[µ1κµ2 ...µk ] = βµ1...µk (2.19)

is equivalent to
d(κ|Σ) = β|Σ on all spatial leaves Σ. (2.20)

Proof. (i) β is purely spacelike, such that we have ∇ρβρµ1 ...µk−1 =
(n)

∇ρβρµ1...µk−1 =

hρσ
(n)

∇σβρµ1 ...µk−1 . Restricted to any spatial leaf Σ,
(n)

∇ is the Levi-Civita connection
of (Σ, (n)h), and thus restriction of (2.17) to Σ gives (2.18).

(ii) Since κ is purely spacelike, we have k∇[µ1κµ2 ...µk ] = k
(n)

∇[µ1κµ2...µk ]. Restricted to
Σ, these are the components of d(κ|Σ), expressed in terms of the Levi-Civita

connection
(n)

∇ of (Σ, (n)h), and thus restriction of (2.19) to Σ gives (2.20).

In the following, we view the twist ω of v as a two-form and the acceleration α of v
as a one-form, both of which are purely spacelike with respect to v.

Lemma 2.14. If ∇ is Newtonian, then on any spatial leaf Σ we have d(ω|Σ) = 0.

Proof. According to (2.5), the twist is one half of the spatial part of the Newton–Coriolis
form, i.e. ω|Σ = 1

2 Ω|Σ. Now ∇ being Newtonian means dΩ = 0 (theorem 1.27), which
implies d(ω|Σ) = 1

2 d(Ω|Σ) = 1
2 (dΩ)|Σ = 0, since d commutes with pullback and

therefore with restriction to submanifolds.

Lemma 2.15. If ∇ satisfies the Newton–Cartan field equation and v is rigid, then on any
spatial leaf Σ we have (n)δ(ω|Σ) = 0.
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2. Classical Newton–Cartan gravity

Proof. By corollary 2.11 and the field equation (2.1), we have

hρµ∇ρωµν = −hρµRµνρ
σvσ

= −Rν
σvσ

(2.1)
= 0, (2.21)

which by proposition 2.13 (i) may be invariantly written as (n)δ(ω|Σ) = 0.

Lemma 2.16. If ∇ is Newtonian and v is rigid, then on any spatial leaf Σ acceleration and
twist satisfy d(α|Σ) = 2(∇v ω)|Σ.

Proof. According to (2.5), we have Ω = τ ∧ α + 2ω; so ∇ being Newtonian means
(theorem 1.27) that 0 = dΩ = −τ ∧ dα + 2dω. In components, this becomes

0 = −3τ[µ(dα)νρ] + 2 · 3∂[µωνρ]

= −6τ[µ∂ναρ] + 6∂[µωνρ] . (2.22)

Due to ∇ being torsion-free, we may replace the anti-symmetrised partial derivatives
by anti-symmetrised covariant derivatives with respect to ∇, obtaining

0 = −6τ[µ∇ναρ] + 6∇[µωνρ]

= −2τµ∇[ναρ] − 2τν∇[ραµ] − 2τρ∇[µαν]

+ 2∇µωνρ + 2∇νωρµ + 2∇ρωµν . (2.23)

Then raising ν, ρ and contracting with vµ, we obtain

0 = −2∇[ναρ] + 2vµ∇µωνρ + 2vµ∇νω
ρ
µ + 2vµ∇ρω ν

µ . (2.24)

Due to ω being purely spacelike and v being rigid, we may rewrite the last two terms
of (2.24) as

2vµ∇νω
ρ
µ + 2vµ∇ρω ν

µ = −2ω
ρ
µ ∇νvµ︸ ︷︷ ︸

=ωνµ

−2ω ν
µ ∇ρvµ︸ ︷︷ ︸

=ωρµ

= −2ω
ρ
µωνµ + 2ων

µωρµ

= 0. (2.25)

Thus (2.24) becomes
2vµ∇µωνρ = 2∇[ναρ] , (2.26)

which by proposition 2.13 (ii) may be written as d(α|Σ) = 2(∇v ω)|Σ.
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2.2. Recovering Newtonian gravity

Now, in addition to ∇, consider the unique torsion-free Galilei connection
v
∇ that

has vanishing Newton–Coriolis form with respect to v. According to the classification
theorem 1.16, we have

Γρ
µν =

v
Γρ

µν + τ(µΩ ρ
ν) . (2.27)

Corollary 2.17. If ∇ is Newtonian and v is rigid, we have d(α|Σ) = 2(
v
∇v ω)|Σ.

Proof. A direct calculation using (2.27) and (2.5) shows that ∇v ω =
v
∇v ω, so the result

follows from lemma 2.16.

Lemma 2.18. If v is rigid, then
v
∇v = 0.

Proof. Since v is rigid, we have
v
∇(µvν) = 0; since the Newton–Coriolis form of

v
∇ with

respect to v vanishes, we also have
v
∇[µvν] = 0 and

v
∇vv = 0, i.e.

v
∇v = 0.

Lemma 2.19. Let v be rigid, and (M, τ, h) spatially flat. Then
v
∇ is flat.

Proof. Fix any spatial leaf Σ. Since it is flat as a Riemannian manifold (spatial flatness),
there exists (locally) a parallel frame of vector fields on Σ, i.e. vector fields ẽa ∈ Γ(TΣ),

a ∈ {1, . . . , n} which satisfy
(n)

∇ẽa ẽb = 0 and pointwise are a basis of TpΣ.
We extend these vector fields along the flow of v to obtain vector fields ea defined on

a neighbourhood of Σ in M, i.e.

ea|Σ = ẽa , 0 = Lvea = [v, ea]. (2.28)

Due to vanishing torsion and
v
∇v = 0 (lemma 2.18), we have

0 = [v, ea] =
v
∇vea −

v
∇ea v︸ ︷︷ ︸
=0

=
v
∇vea . (2.29)

Furthermore, since on each spatial leaf,
(n)

∇ is the Levi-Civita connection of the induced

spatial metric,
(n)

∇ea eb can be expressed purely in terms of h, ea and eb. Due to Lvh = 0,

Lvea = 0 and Lveb = 0, we thus have Lv(
(n)

∇ea eb) = 0. Together with (
(n)

∇ea eb)|Σ =

(
(n)

∇ẽa ẽb) = 0, this implies

0 =
(n)

∇ea eb =
v
∇ea eb . (2.30)

Combined, we thus have a local frame {v, ea} that satisfies
v
∇v = 0,

v
∇ea = 0, (2.31)

i.e. that is parallel with respect to
v
∇, which means that

v
∇ is flat.
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2. Classical Newton–Cartan gravity

Lemma 2.20. If ∇ satisfies the Newton–Cartan field equation, v is rigid and (M, τ, h) is
spatially flat, then on any spatial leaf Σ we have

−(n)δ(α|Σ) = 4πGρ − ωµνωµν, (2.32)

where ρ is the mass density.

Proof. Writing Γρ
µν =

v
Γρ

µν + Sρ
µν, the curvature tensor of ∇ can be expressed in terms of

the curvature tensor
v
R of

v
∇ as

Rµ
νρσ =

v
Rµ

νρσ +
v
∇ρSµ

σν −
v
∇σSµ

ρν + Sµ
ρλSλ

σν − Sµ
σλSλ

ρν , (2.33)

so due to flatness of
v
∇ (lemma 2.19) we have

vνvσRνσ = vνvσRµ
νµσ

= vνvσ(
v
∇µSµ

σν −
v
∇σSµ

µν + Sµ
µλSλ

σν − Sµ
σλSλ

µν). (2.34)

Equation (2.27) together with Ω = τ ∧ α + 2ω (equation (2.5)) gives

Sρ
µν = τ(µΩ ρ

ν) = τµτναρ + 2τ(µ ω ρ
ν) , (2.35)

and in particular Sµ
µν = 0. Using these, (2.34) becomes

vνvσRνσ = vνvσ(τστν

v
∇µαµ + 2τ(σ

v
∇|µ|ω

µ
ν) − (τστλαµ + 2τ(σ ω µ

λ) )(τµτναλ + 2τ(µ ω λ
ν) ))

=
v
∇µαµ + 2vν

v
∇µω

µ
ν − ω

µ
λ ω λ

µ , (2.36)

where we have used that α and ω are purely spacelike. Due to
v
∇v = 0 (lemma 2.18),

we have vν
v
∇µω

µ
ν =

v
∇µ(vνω

µ
ν ) = 0; and due to the field equation (2.1), we have

vνvσRνσ = 4πGρ. Thus (2.36) is equivalent to

4πGρ =
v
∇µαµ + ωµνωµν, (2.37)

finishing the proof (with proposition 2.13 (i)).

Combining everything, we arrive at the final result.

Theorem 2.21 (Künzle–Ehlers recovery theorem). Let (M, τ, h,∇) be a Newtonian manifold
that satisfies the Newton–Cartan field equation and is spatially flat. Let v be a rigid unit timelike
vector field on (M, τ, h), let α and ω be its acceleration and twist with respect to ∇, and denote
by

v
∇ the unique torsion-free Galilei connection that has vanishing Newton–Coriolis form with

respect to v. Then
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2.2. Recovering Newtonian gravity

(i)
v
∇v = 0,

(ii)
v
∇ is flat,

(iii) a timelike curve γ parametrised by absolute time is a geodesic of ∇ iff

(
v
∇γ̇γ̇)ν = −αν + 2ων

µ γ̇µ (2.38)

along γ, and

(iv) on any spatial leaf Σ, we have the ‘recovered field equations’

d(ω|Σ) = 0, (2.39a)
(n)δ(ω|Σ) = 0, (2.39b)

d(α|Σ) = 2(
v
∇v ω)|Σ , (2.39c)

−(n)δ(α|Σ) = 4πGρ − ωµνωµν, (2.39d)

where ρ is the mass density.

Proof. This is a combination of lemmas 2.14, 2.15, 2.18, 2.19, 2.20 and corollary 2.17. The
only remaining statement that we have to prove is (2.38), i.e. the equation of motion
for test particles with respect to

v
∇, which follows easily from (2.27) and (2.5): for any

curve γ with τ(γ̇) = 1, these give

(∇γ̇γ̇)ν = (
v
∇γ̇γ̇)ν + τ(µ Ω ν

λ) γ̇µγ̇λ

= (
v
∇γ̇γ̇)ν + (τµτλαν + 2τ(µ ω ν

λ) )γ̇µγ̇λ

= (
v
∇γ̇γ̇)ν + αν − 2ων

λ γ̇λ. (2.40)

Construction 2.22 (Recovery in adapted coordinates). Suppose that our Galilei manifold
(M, τ, h) is spatially flat. On one spatial leaf Σ, we introduce orthonormal coordinates
(x̃a), a ∈ {1, . . . , n}, i.e. coordinates in which the metric takes the form (n)hab = δab. Now
using our unit timelike vector field v, we can extend the coordinates to a neighbourhood
of Σ in M: starting at a point on Σ with coordinates (xa) and following the flow of v
for time parameter t, the resulting point in M gets coordinates (t, xa). Put differently,
the coordinates are defined such that the flow lines of v are lines of constant spatial
coordinates (xa) and varying t, i.e.

v =
∂

∂t
with respect to (t, xa); (2.41)
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Σ, t = 0

t = t1

p (0, x̃a(p))

(t1, x̃a(p))

q

(0, x̃a(q))

(t1, x̃a(q))

Figure 2.2.: The definition of coordinates adapted to a timelike vector field

and the (xa) can be imagined to be realised by coordinate labels that are mounted to
particles flowing with v, see figure 2.2.

Now by construction, when evaluated on the original spatial leaf Σ, the coordinate
vector fields ea := ∂

∂xa agree with the fields ẽa := ∂
∂x̃a ; and since they are coordinate

fields, the ea all commute with v = ∂
∂t , i.e. are transported along the flow of v. Because

the original coordinates x̃a are orthonormal, the ẽa are parallel with respect to the

Levi-Civita connection
(n)

∇ of (Σ, (n)h). So we have

ea|Σ = ẽa , Lvea = 0,
(n)

∇ẽa ẽb = 0 on Σ. (2.42)

Thus, if v is rigid, we know from the proof of flatness of
v
∇ (lemma 2.19) that the frame

{v, ea} is parallel with respect to
v
∇, i.e. that

v
Γρ

µν = 0 in the coordinates (t, xa). (2.43a)

In particular, the xa are flat coordinates on all spatial leaves. Since Lvh = 0, they are in
fact orthonormal, and we have

τ = dt, htt = hta = 0, hab = δab in the coordinates (t, xa). (2.43b)

Expressed in those adapted coordinates, the test particle equation of motion (2.38)
therefore takes the form

γ̈a = −αa + 2ωa
b γ̇b, (2.44)

i.e. in those coordinates −α plays the role of the Newtonian gravitational field (gravita-
tional acceleration), while the local rate −ω of rotation of the spatial frame (ea) gives
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2.2. Recovering Newtonian gravity

rise to a Coriolis-force term (in the three-dimensional case, writing −ωab =: εabcωc, the
term becomes the familiar 2ωa

b γ̇b = −2(ω⃗ × ˙⃗γ)a). This is the reason for Ω = τ ∧ α+ 2ω

being called the Newton–Coriolis form.
The recovered field equations (2.39) become

∂[aωbc] = 0, ∂aωab = 0, (2.45a)

∂[aαb] = ∂tωab, ∂aαa = 4πGρ − ωabωab, (2.45b)

i.e. on each spatial leaf the twist field ω has to satisfy the constraints (2.45a), and by
(2.45b) mass density and twist together determine the gravitational field −α (up to
homogeneous solutions of (2.45b), i.e. harmonic one-forms).

We thus have recovered the usual formulation of Newtonian gravity (in n-dimensional space)
in Cartesian coordinates with respect to potentially rotating reference frames.

The formulation of the recovery theorem in terms of the flat connection
v
∇ may be

seen as a coordinate-free method to state what the equations look like in coordinates
adapted to the ‘observer vector field’ v.

Remark 2.23. The converse of the recovery theorem is true as well. Suppose we are
given a Galilei manifold (M, τ, h) with absolute time that is spatially flat, and a rigid
unit timelike vector field v on it. We know that the associated torsion-free Galilei
connection

v
∇ with

v
∇v = 0 is flat.

Now, given any purely spacelike one-form α and purely spacelike two-form ω,
we can define the torsion-free Galilei connection ∇ that has Newton–Coriolis form
Ω := τ ∧ α + 2ω with respect to v, such that α and ω are then the acceleration and
twist of v with respect to ∇. By essentially going backwards through the arguments of
this section, one can show that if α and ω satisfy the equations (2.39), the resulting ∇
will be Newtonian (i.e. dΩ = 0) and satisfy the Newton–Cartan field equation.

We can even start one step further back: Given a solution of standard Newtonian
gravity, i.e. a solution α, ω to the equations (2.45) on (some portion of) M = Rn+1 with
coordinates (t, xa), we can define τ = dt, h := δab∂a ⊗ ∂b and v := ∂t and then continue
as above to construct a spacetime satisfying the axioms for Newton–Cartan gravity.

This procedure of obtaining a Newton–Cartan spacetime from Newtonian gravity is
sometimes called geometrisation.

Note that the recovery theorem depends crucially on the rigidity of the ‘observer
vector field’ v with respect to which we have performed the recovery (i.e. which we use,
in the coordinate formulation of construction 2.22, to identify the spatial coordinates
on different spatial leaves). If there were no rigid vector fields, we would not be able
to recover Newtonian gravity. But fortunately spatial flatness ensures that we may
construct rigid vector fields:
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Proposition 2.24. Let (M, τ, h) be a Galilei manifold with absolute time that is spatially
flat. Then for any timelike worldline γ one can construct a rigid timelike vector field v (in a
neighbourhood of γ) that along γ agrees with γ̇.

Proof. Since the spatial leaves are flat, on each of them we can introduce orthonormal
coordinates for the induced metric. In particular, we can introduce coordinates (t, xa)

in a neighbourhood of γ in M such that t is absolute time, the xa are orthonormal
coordinates on each spatial leaf, and xa(γ(t)) = 0 for all t.4 The xa being orthonormal
with respect to the induced metric (n)h means that in the coordinates (t, xa), we have
(n)hab = δab. Together with τ = dt this implies that

hab = δab in the coordinates (t, xa). (2.46)

Now we define

v :=
∂

∂t
in the coordinates (t, xa), (2.47)

i.e. v points in the direction of constant spatial coordinates xa. By construction, v agrees
with γ̇ along γ.

Furthermore, since the Lie derivative commutes with the exterior derivative, we have
Lv(dxa) = d(Lvxa) = d(dxa(v)) = d(va) = d(0) = 0, and similarly Lv(dt) = d(vt) =

d(1) = 0. By the Leibniz rule for the Lie derivative, we obtain

(Lvh)ab = (Lvh)(dxa, dxb)

= v(hab)− h(Lv(dxa), dxb)− h(dxa,Lv(dxb))

= v(δab) = 0 (2.48a)

and, for any one-form β,

(Lvh)(dt, β) = v(h(dt, β))− h(Lv(dt), β)− h(dt,Lvβ)

= v(h(τ, β))− h(τ,Lvβ)

= 0. (2.48b)

This shows Lvh = 0, i.e. rigidity of v.

4Explicitly, such coordinates may be constructed by taking a smooth orthonormal frame of spacelike
vector fields ea defined along γ, and on each leaf Σ at time t introducing normal coordinates around
γ(t) with respect to the basis {ea(t)} of Tγ(t)Σ.

In the following construction of v, the ea become the ‘connecting vectors’ from γ to ‘infinitesimally
close’ flow lines of v, so by choosing the ea to be parallelly transported along γ, we could arrange for
the twist of v to vanish along γ.
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2.2. Recovering Newtonian gravity

2.2.3. Trautman’s condition of absolute rotation

The appearance of the twist field ω in the Künzle–Ehlers recovery theorem 2.21 might
seem a little strange: we would arrive at the standard formulation of Newtonian
gravity in inertial reference frames in the case ω = 0, i.e. for twist-free observer vector
fields v. However, if we had a twist-free rigid field v, by corollary 2.11 this would
imply Rµνρ

σvσ = −∇ρωµν = 0, which in general need not be true. Therefore, in the
general case of Newton–Cartan gravity, twist-free rigid vector fields need not exist, due to
a ‘curvature obstruction’.

In the formulation of Newton–Cartan gravity by Trautman [Tra63], an additional
curvature condition is demanded which, as we will see, guarantees the existence of
twist-free rigid vector fields.

Definition 2.25. A spatially flat Galilei manifold with absolute time with a torsion-free
Galilei connection is said to have absolute rotation iff the connection’s curvature tensor
satisfies

Rµν
ρσ = 0. (2.49)

Proposition 2.26. Consider a spatially flat Galilei manifold with absolute time with a torsion-
free Galilei connection. The following statements are equivalent:

(i) The manifold has absolute rotation.

(ii) For all timelike vectors ξ, we have

Rµνρ
σξσ = 0. (2.50)

(iii) Given any rigid unit timelike vector field, its twist ω is spatially constant, i.e.

∇ρωµν = 0. (2.51)

Proof. Equivalence of (i) and (ii) follows from spatial flatness and antisymmetry of the
curvature tensor in its last two indices.

Given (ii), we directly obtain (iii) by corollary 2.11. Conversely, given any timelike
vector ξ ∈ Tp M, which without loss of generality we may assume unit timelike, we
can extend it to some timelike curve γ in a neighbourhood of p, which by proposition
2.24 can in turn be extended to a rigid vector field v, which then satisfies v|p = ξ.
By corollary 2.11, we then have Rµνρ

σξσ = (Rµνρ
σvσ)|p = −(∇ρωµν)|p, and thus (iii)

implies (ii).
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2. Classical Newton–Cartan gravity

The preceding proposition is the reason for the name ‘absolute rotation’5: the twist
of a rigid vector field v being spatially constant means that in all of space, the flow lines
of v rotate around each other with the same rate of rotation / angular velocity.

Remark 2.27. In the spatially flat case, we have Rµνρ
σ(vσ − ṽσ) = 0 for any two unit

timelike vector fields v and ṽ. For rigid fields, by corollary 2.11 this implies that

∇ρωµν = ∇ρω̃µν, (2.52)

i.e. the spatial derivative of the twist is the same for all rigid unit timelike vector fields.
In particular, the twist is spatially constant either for all rigid fields (absolute rotation)
or for none.

In particular, absolute rotation is already implied by just one rigid unit timelike vector
field having spatially constant twist.

Proposition 2.28. Let (M, τ, h,∇) be a spatially flat Galilei manifold with absolute time with
a torsion-free Galilei connection that has absolute rotation. Let v be a rigid unit timelike vector
field, and γ one fixed flow line of v. Then there is a unique twist-free rigid timelike field ṽ that
along γ agrees with v.

Proof. The idea of the proof is that due to v ‘rotating everywhere with the same speed’,
we may ‘counter-rotate’.

Due to rigidity, we have ∇µvν = ωµν, and ṽ being rigid and twist-free would mean
∇µṽν = 0. This is true if and only if the spacelike difference vector field X := ṽ − v
satisfies

(n)

∇µXν = −ωµν, X|γ = 0. (2.53)

This is an independent equation for X on each spatial leaf Σ. In orthogonal coordinates
(xa) on Σ such that xa(γ(t)) = 0 for the corresponding value of t, this equation becomes

∂aXb = ωb
a , Xa(0) = 0, (2.54)

where the components ωb
a are constant (ω|Σ is covariantly constant, i.e. its components

in orthogonal coordinates are constant). This system has the unique solution

Xa(x) = ωa
b xb. (2.55)

5The interpretation of the curvature condition (2.49) in terms of rotation was, as far as I (the lecturer)
know, not given by Trautman, at least not explicitly. To my knowledge, it first appears in explicit form
in Ehlers’ 1981 article on frame theory [Ehl81].
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2.2. Recovering Newtonian gravity

Theorem 2.29 (Trautman recovery theorem). Let (M, τ, h,∇) be a Newtonian manifold
that satisfies the Newton–Cartan field equation, is spatially flat and has absolute rotation. Let
v be a twist-free rigid unit timelike vector field on (M, τ, h,∇), and denote by

v
∇ the unique

torsion-free Galilei connection that has vanishing Newton–Coriolis form with respect to v. Then
locally there exists a function ϕ on M, unique up to addition of a constant on each spatial leaf,
such that

(i) a timelike curve γ parametrised by absolute time is a geodesic of ∇ iff

(
v
∇γ̇γ̇)ν = −

v
∇νϕ (2.56)

along γ, and

(ii) ϕ satisfies Poisson’s equation
v
∇µ

v
∇µϕ = 4πGρ, (2.57)

where ρ is the mass density.

Proof. We apply the Künzle–Ehlers recovery theorem 2.21 in the case ω = 0. The
recovered field equations (2.39) reduce to

d(α|Σ) = 0, (2.58a)

−(n)δ(α|Σ) = 4πGρ. (2.58b)

The first of these tells us that on each spatial leaf Σ, α|Σ is closed, such that by the
Poincaré lemma we locally have α|Σ = d(ϕΣ) for some function ϕΣ on Σ. Combining
those for different Σ, we obtain a (locally defined) function ϕ on M which satisfies6

α|Σ = d(ϕ|Σ). (2.59)

Inserting this into (2.58b), we obtain Poisson’s equation; and inserting it into the test
particle equation of motion (2.38) from the Künzle–Ehlers recovery theorem, we obtain
the equation of motion (2.56).

Remark 2.30. In coordinates adapted to v as in construction 2.22, this is the standard
formulation of Newtonian gravity with gravitational potential ϕ: The test particle
equation of motion becomes

γ̈a = −δab∂bϕ, (2.60)

and the field equation for the potential ϕ becomes

δab∂a∂bϕ = 4πGρ. (2.61)
6Note that (2.59) means that as a form on spacetime, we have α = dϕ + f τ for some function f , which by

αµvµ = 0 is fixed to be f = −v(ϕ).
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2. Classical Newton–Cartan gravity

Remark 2.31. The possibility of motions that are rigid but whose angular velocity varies
throughout space might seem unintuitive, and so one might be tempted to discard
Newton–Cartan spacetimes not satisfying the absolute rotation condition as ‘unphysical’
– after all, in usual Newtonian mechanics, rotation is absolute. However, when consid-
ering Newton–Cartan gravity as a limit of GR (see section 2.3), the absolute rotation
condition is not automatically satisfied; i.e. there are general-relativistic spacetimes
with ‘Newtonian’ limits in which rotation is not absolute.

As was shown by Ehlers (suggested by Künzle), the absolute rotation condition
follows from a weak notion of asymptotic flatness:

Proposition 2.32. Let (M, τ, h,∇) be a Newtonian manifold that satisfies the Newton–Cartan
field equation and is spatially flat, and whose spatial leaves are simply connected and geodesically
complete. If for any spacelike geodesic γ : R → M, we have

(Rµ
νκρRν κ

µ σvρvσ)
∣∣∣
γ(s)

s→∞−−→ 0 (2.62)

for some unit timelike vector field v, then the manifold has absolute rotation.

Proof. Each spatial leaf is a simply connected geodesically complete flat Riemannian
manifold of dimension n, i.e. isometric to n-dimensional Euclidean space.

Due to spatial flatness, the expression on the left-hand side of (2.62) is the same for
any unit timelike vector field v. In particular, for v rigid, by corollary 2.11 we obtain

((∇κω
µ

ν)∇κων
µ)
∣∣∣
γ(s)

s→∞−−→ 0, (2.63)

i.e.
(n)

∇ω goes to zero at infinity on each spatial leaf.
Now by the Künzle–Ehlers recovery theorem, on each spatial leaf Σ, ω satisfies

d(ω|Σ) = 0 and (n)δ(ω|Σ) = 0, i.e. ω|Σ is a harmonic form. This implies that its
components ωab with respect to orthonormal coordinates are harmonic functions,
which in turn implies that ∂aωbc are also harmonic functions. Since those vanish at
infinity, by the maximum principle for harmonic functions on Rn they vanish on all of
Σ. Thus ω is spatially constant, and we are done.

2.3. Newton–Cartan gravity as a formal limit of general
relativity

In this section, we will show in which sense Newton–Cartan gravity arises as the
‘Newtonian limit’ of general relativity (GR). We will consider this limit in a purely
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2.3. Newton–Cartan gravity as a formal limit of general relativity

formal way, namely formulate it as the formal limit c → ∞, where c is the speed of
light. To implement this limit, we will expand all objects of GR as formal power series
in the parameter c−1 – or, more precisely, formal Laurent series, since we will need
negative orders of c−1 – and consider the behaviour of the terms of order c0.

Of course, analytically speaking, a ‘Taylor expansion’ in a dimensionful parameter
like c does not make sense (even more so since c is a constant of nature); only for
dimensionless parameters can a meaningful ‘small-parameter approximation’ be made.
In physical realisations of the limit from GR to Newton–Cartan gravity, this means
that the corresponding small parameter has to be chosen as, e.g., the ratio of some
typical velocity of the system under consideration to the speed of light. In the following,
however, we will forget about these issues and just expand in c−1 as a formal parameter.7

(Ehlers discusses the ‘limit’ in terms of an actual small parameter approaching zero
[Ehl81], and other places in the literature discuss the relationship of formal ‘c → ∞’
limits to actual physical approximations, see, e.g., [TF11].)

The following considerations can be motivated by the observation that the (n + 1)-
dimensional Minkowski metric may be written as

η = −c2dt2 +
n

∑
a=1

(dxa)2 , (2.64a)

and its inverse as

η−1 =
n

∑
a=1

∂a ⊗ ∂a − c−2∂t ⊗ ∂t . (2.64b)

Lemma 2.33. Let (M, g) be a Lorentzian manifold, and assume that the metric g may be
expanded as a formal power series8 in c−1 as

g = −c2τ ⊗ τ + O(c0) (2.65a)

for some nowhere vanishing one-form τ ∈ Ω1(M). Assume further that the inverse metric has
the expansion

g−1 = h + O(c−2) (2.65b)

for some contravariant degree-2 tensor field h.
7Strictly speaking, this means that we are not dealing with tensor fields in the usual sense, but with

tensor fields that take values in the field of formal Laurent series R((c−1)) instead of the real numbers.
However, for the formal treatment of the theory this does not cause any problems – we just define
differentiation of series-valued tensor fields order by order, and demand that equations be satisfied
order by order.

8As said above, this is a formal Laurent series, since we have a term of negative order. We will however
continue to use the term ‘power series’, since most of our series will have terms of just non-negative
order.
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2. Classical Newton–Cartan gravity

(i) (M, τ, h) is a Galilei manifold.

(ii) Writing g−1 =: h + c−2k + O(c−3), the vector field v := −k(τ, ·) is unit timelike in the
Newton–Cartan sense (with respect to τ).

(iii) Using v from above, the metric has the expansion

g = −c2τ ⊗ τ +
v
h − 2ϕτ ⊗ τ + O(c−1) (2.66)

for some function ϕ.

Proof. We write the expansion of the metric as

g = −c2τ ⊗ τ + g(0) + O(c−1) (2.67)

for some as of yet unknown tensor field g(0).
The definition of the inverse metric reads gµνgνρ = δ

ρ
µ, which with the assumed

expansions becomes

δ
ρ
µ = −c2τµτνhνρ + g(0)µν hνρ − τµτνkνρ + O(c−1). (2.68)

Comparison of coefficients implies τνhνρ = 0 and

δ
ρ
µ = g(0)µν hνρ − τµτνkνρ. (2.69)

Since the identity map has rank dim M =: n + 1 and the last term in (2.69) has rank 1,9

the first term on the right-hand side has rank ≥ n. This implies that h has rank ≥ n;
since it is degenerate in direction τ, it has rank n. To show that (M, τ, h) is a Galilei
manifold, it remains to prove that in its n non-degenerate directions h is positive
definite. This we will do in a moment.

Contracting (2.69) with τρ, we obtain −1 = τνkνρτρ. This shows on the one hand that
v := −k(τ, ·) is unit timelike (in the Newton–Cartan sense), and on the other hand
that g−1(τ, τ) = −c−2 + O(c−3) < 0, i.e. that τ is timelike in the Lorentzian sense with
respect to g.

Let now β be any covector such that h(β, β) ̸= 0. This implies that β and τ are

linearly independent, and therefore the projection β̃ := β − g−1(τ,β)
g−1(τ,τ)τ of β onto the

g−1-orthogonal complement of τ is nonzero. Since τ is timelike, β̃ is spacelike (both
in the Lorentzian sense). One easily computes that β̃ = β + k(τ, β)τ + O(c−1), which
implies 0 < g−1(β̃, β̃) = h(β, β) + O(c−1). Thus h(β, β) > 0, and we have shown that h

9If it had rank 0, the first term on the right-hand side would be of rank n + 1, which can’t be the case
since h has a degenerate direction and therefore rank at most n.
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2.3. Newton–Cartan gravity as a formal limit of general relativity

is positive definite in its non-degenerate directions. Thus now we know that (M, τ, h)
is a Galilei manifold.

Now comparing (2.69) to the definition δ
ρ
µ = Pρ

µ + τµvρ of the projector with respect

to v, we obtain g(0)µν hνρ = Pρ
µ . This in turn implies g(0)µν Pν

ρ = hµρ, where hµρ are the
components of

v
h. Thus we finally obtain

g(0)µν = g(0)ρσ (Pρ
µ + vρτµ)(Pσ

ν + vστν)

= hµν + g(0)(v, v)︸ ︷︷ ︸
=:−2ϕ

τµτν (2.70)

and are finished.

Note that the assumed expansions of the metric and its inverse correspond to the
existence of the formal ‘c → ∞ limits’

lim
c→∞

(c−2g) = −τ ⊗ τ, lim
c→∞

g−1 = h (2.71)

and the statement that the next-to-leading-order terms (c1 for g, c−1 for g−1) vanish.

Construction 2.34. We will now compute the Christoffel symbols of the Lorentzian
metric g, i.e. the connection coefficients of the Levi-Civita connection. Using the
expansions from lemma 2.33, the Christoffel symbols are

g

Γρ
µν =

1
2

gρσ(∂µgνσ + ∂νgµσ − ∂σgµν)

=
1
2
(
hρσ + c−2kρσ + O(c−3)

) (
−(c2 + 2ϕ)2(τσ∂(µτν) + τ(ν∂µ)τσ − τ(µ∂|σ|τν))

+ ∂µhνσ + ∂νhµσ − ∂σhµν − 4τστ(ν∂µ)ϕ + 2τµτν∂σϕ + O(c−1)
)

= −(c2 + 2ϕ)hρσ(τ(ν∂µ)τσ − τ(µ∂|σ|τν)) +
1
2

hρσ(∂µhνσ + ∂νhµσ − ∂σhµν)

+ hρστµτν∂σϕ − kρσ(τ(ν∂µ)τσ − τ(µ∂|σ|τν))− kρστσ︸ ︷︷ ︸
=−vρ

∂(µτν) + O(c−1)

= −[(c2 + 2ϕ)hρσ + kρσ]τ(µ(dτ)ν)σ + vρ∂(µτν) +
1
2

hρσ(∂µhνσ + ∂νhµσ − ∂σhµν)

+ hρστµτν∂σϕ + O(c−1). (2.72)

Theorem 2.35. Let (M, g) be a Lorentzian manifold whose metric and inverse metric have
expansions as in lemma 2.33.

(i) (M, τ, h) is a Galilei manifold.
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2. Classical Newton–Cartan gravity

(ii) The Levi-Civita connection
g

∇ of (M, g) has a regular formal c → ∞ limit, i.e. no terms
of negative order in c−1, iff dτ = 0.

(iii) If dτ = 0, the formal c → ∞ limit of
g

∇, i.e. its term of order c0, is a torsion-free Galilei

connection ∇ on (M, τ, h). The curvature tensors of
g

∇ and of ∇ satisfy the formal limit
relation

lim
c→∞

g

Rµ
νρσ = Rµ

νρσ , (2.73)

and ∇ is Newtonian.

Proof. (i) was proved in lemma 2.33, and (ii) follows directly from the calculation in
construction 2.34 (by decomposing into spacelike and timelike components, one easily
checks that τ(µ(dτ)ν)σ = 0 is equivalent to dτ = 0). Comparing the limiting connection
from (2.72) to the general form of Galilei connections from the classification theorem
(theorem 1.16), we see that the limit is a torsion-free Galilei connection.

Since the connection coefficients satisfy
g

Γρ
µν = Γρ

µν + O(c−1) (2.74)

and curvature tensor components have the symbolic form

R = ∂Γ − ∂Γ + ΓΓ − ΓΓ, (2.75)

we directly obtain (2.73). Finally, from
g

Rµ ν
ρ σ = gνκ

g

Rµ
ρκσ = hνκRµ

ρκσ + O(c−1) = Rµ ν
ρ σ + O(c−1) (2.76)

and symmetry in pairs of the Riemannian curvature tensor, we obtain symmetry in
pairs for Rµ ν

ρ σ, i.e. that ∇ is Newtonian.

Remark 2.36. Actually, comparing the connection coefficients from (2.72) to the clas-
sification theorem, we obtain even more: the Newton–Coriolis form of the limiting
Galilei connection ∇ with respect to the unit timelike vector field v = −k(τ, ·) satisfies

τ(µΩ ρ
ν) = hρστµτν∂σϕ, (2.77a)

from which we can obtain (by decomposing into spacelike and timelike parts)

Ωµν = 2τ[µ∂ν]ϕ, (2.77b)

i.e.

Ω = τ ∧ dϕ. (2.77c)
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2.3. Newton–Cartan gravity as a formal limit of general relativity

Therefore, the unit timelike vector field v obtained from the expansion of the Lorentzian
metric is twist-free and has acceleration α = dϕ. Note, however, that v is not necessarily
rigid.

Construction 2.37. We now want to look at the Newtonian limit / formal c−1 expansion
of Einstein’s field equation

g

Rµν −
1
2

g

Rgµν =
8πG

c4 Tµν . (2.78a)

In order to be able to obtain a regular Newtonian limit, we have to consider its trace-
reversed form

g

Rµν =
8πG

c4

(
Tµν −

1
n − 1

Tgµν

)
, (2.78b)

where n = dim M − 1 ̸= 1, and T = gµνTµν is the trace of the energy–momentum
tensor.

We assume the metric and inverse metric to have expansions as in lemma 2.33.
Defining the Lorentzian normalised one-form Vµ := τµ/

√
−g−1(τ, τ), we assume the

energy–momentum tensor to have the expansion

Tµν = ρ̂c2VµVν + cΠµVν + VµcΠν + Σµν (2.79a)

where ρ̂, Π, Σ are, respectively, the mass–energy density, the momentum density /
energy current density, and the momentum current density / stress tensor as seen by
an observer with spacetime velocity V, which we all assume to be of order c0. Using
1/

√
−g−1(τ, τ) = c + O(c0), this implies

Tµν = ρc4τµτν + c3(. . . )τµτν + c2[τµ(. . . ) + (. . . )τν] + O(c1), (2.79b)

where ρ is the (rest) mass density, given by the expansion of ρ̂ as ρ̂ = ρ + O(c−1).
Contracting this with gµν = hµν + c−2kµν + O(c−3), the trace of the energy–momentum
tensor is

T = gµνTµν = ρc2kµντµτν + O(c1) = −ρc2 + O(c1), (2.80a)

implying
Tgµν = ρc4τµτν + O(c3). (2.80b)

Inserting (2.79b) and (2.80b) into the trace-reversed Einstein equation (2.78b), we
obtain

g

Rµν = 8π
n − 2
n − 1

Gρτµτν + O(c−1). (2.81)

For n = 3, we thus obtain the Newton–Cartan field equation as the formal c → ∞ limit
of the Einstein equation (and the same in higher dimensions, except for a different
factor in the field equation).
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2. Classical Newton–Cartan gravity

Theorem 2.38. Assuming expansions of the Lorentzian metric and inverse metric as in lemma
2.33, regularity of the Lorentzian Levi-Civita connection as c → ∞, and an expansion of the
energy–momentum tensor as in (2.79), Newton–Cartan gravity arises as the formal c → ∞
limit of general relativity.

Proof. In lemma 2.33 and theorem 2.35, we have seen how the formal c → ∞ limit
of a Lorentzian spacetime gives rise to a Newtonian spacetime. In construction 2.37,
we have shown how the Einstein equation gives rise to the Newton–Cartan field
equation. Since the Levi-Civita connection of the Lorentzian spacetime expands to
the Newtonian connection plus higher-order terms, Lorentzian geodesics in the limit
go over to Newtonian geodesics, i.e. test particle worldlines go over to test particle
worldlines. Due to gµν = −c2τµτν + hµν − 2ϕτµτν +O(c−1), Lorentzian spacelike vectors
are also spacelike in the Newton–Cartan sense, and spatial lengths as defined by g in
the limit go over to spatial lengths as defined by h. Finally, ideal clocks in GR measure
Lorentzian proper time, which for future-directed worldlines expands as

c−1
∫

γ

√
−gµνdxµdxν = c−1

∫
γ

√
c2τµτνdxµdxν + O(c0) =

∫
γ

τ + O(c−2), (2.82)

i.e. in the limit becomes (absolute) time in the Newton–Cartan sense.

Example 2.39. Consider the Schwarzschild metric

g = −
(

1 − 2GM
c2r

)
c2dt2 +

(
1 − 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2θ dφ2), (2.83a)

with inverse metric given by

g−1 = −
(

1 − 2GM
c2r

)−1

c−2∂t ⊗ ∂t +

(
1 − 2GM

c2r

)
∂r ⊗ ∂r

+ r−2(∂θ ⊗ ∂θ + sin−2θ ∂φ ⊗ ∂φ). (2.83b)

Expanding those in powers of c−1 (using the geometric series for the inversion of power
series), we obtain

g = −c2dt2︸ ︷︷ ︸
!
=−c2τ⊗τ

+
2GM

r
dt2 + dr2 + r2(dθ2 + sin2θ dφ2)︸ ︷︷ ︸

=g(0)

+ O(c−2), (2.84a)

g−1 = ∂r ⊗ ∂r + r−2(∂θ ⊗ ∂θ + sin−2θ ∂φ ⊗ ∂φ)︸ ︷︷ ︸
=h

+ c−2
(
−∂t ⊗ ∂t −

2GM
r

∂r ⊗ ∂r

)
︸ ︷︷ ︸

=k

+O(c−4). (2.84b)
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2.3. Newton–Cartan gravity as a formal limit of general relativity

We thus see that we may take τ = dt, and can read off the expansion coefficients
h, g(0), k from lemma 2.33. We see that on the spatial leaves of constant t, the space
metric h induces just the usual Euclidean metric in spherical coordinates.

Further, we obtain v = −k(τ, ·) = ∂t, giving ϕ = − 1
2 g(0)(v, v) = −GM

r , which leads
to

v
h = g(0) + 2ϕτ ⊗ τ = dr2 + r2(dθ2 + sin2θ dφ2) being the Euclidean metric.
Since v = ∂t and the coordinate components of h do not depend on t, we have

Lvh = 0, i.e. v is rigid. According to remark 2.36, it has acceleration α = dϕ and is
twist-free, so we may apply the Trautman recovery theorem and obtain a solution of
usual Newtonian gravity with gravitational potential ϕ.
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3. Galilei manifolds via principal
bundles

Here, we will discuss how we can describe Galilei manifolds and Galilei connections
on them in terms of principal bundles.

3.1. The Galilei group

Definition 3.1. The (orthochronous1) homogeneous Galilei group in n + 1 dimensions is
the semidirect product

Gal = O(n)⋉ Rn, (3.1a)

where O(n) acts on Rn in the natural way. This means that elements of Gal are pairs
(R, k) with R ∈ O(n) and k ∈ Rn, and the group operation is

(R, k)(R̃, k̃) = (RR̃, k + Rk̃). (3.1b)

It is a Lie group, with Lie algebra the semidirect sum2

gal = so(n) i Rn. (3.2a)

This means that as a vector space, gal is the direct sum of so(n) and Rn, while the Lie
bracket is given by

[(X, k), (X̃, k̃)] = ([X, X̃], Xk̃ − X̃k) (3.2b)

1Instead, we could also consider the full homogeneous Galilei group, including time reversal, or restrict
to the proper (without reflections, but including time reversal) or proper orthochronous Galilei group
(which is the connected component of the identity). However, our definition of Galilei manifolds from
chapter 1 comes with a choice of time orientation and without the need for space orientability; thus the
orthochronous group is the one we will need in the following. Of course, it is a matter of convention
what precise definition of a Galilei manifold one chooses.

2Note that the Lie algebras of O(n) and SO(n) coincide, the latter group being the connected component
of the identity of the former.
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3. Galilei manifolds via principal bundles

The homogeneous Galilei group acts on Rn+1 via

(R, k)(s, y) = (s, Ry + sk), (3.3)

where s ∈ R and y ∈ Rn. In this way, it can be viewed as a subgroup of GL(n + 1).

Interpreting s as the time and y as the position of an event in ‘standard Newtonian
spacetime’, we see that the O(n) part of Gal corresponds to improper rotations of space,
while the Rn part corresponds to Galilei boosts.

Notation 3.2. When understanding Rn+1 as the space on which the Galilei group acts
according to (3.3), we will often write elements of Rn+1 as y = (yt, ya), i.e. use t as
a ‘temporal’ index and lowercase Latin letters from the beginning of the alphabet as
‘spatial’ indices running from 1 to n, as we did for labelling the vectors of a Galilei
basis (definition 1.20), or in index notation in adapted coordinates for Galilei manifolds.
Capital Latin indices run through the full range {t, 1, . . . , n}, i.e. y = (yt, ya) = (yA).

Remark 3.3. Writing the action (3.3) of Gal on Rn+1 in matrix form, we see that when
viewing Gal as a subgroup of GL(n + 1), the matrix corresponding to a Galilei group
element (R, k) ∈ Gal is (

1 0
k R

)
∈ GL(n + 1). (3.4a)

Therefore, the condition for a matrix A ∈ GL(n + 1) to be an element of Gal can be
written in components as

At
t = 1, At

a = 0, (Aa
b) ∈ O(n). (3.4b)

Viewing the homogeneous Galilei Lie algebra gal as a subalgebra of the matrix Lie
algebra gl(n + 1) of all (n + 1) × (n + 1) matrices, the abstract Lie algebra element
(X, k) ∈ gal = so(n) i Rn is represented by the matrix(

0 0
k X

)
∈ gl(n + 1). (3.5a)

In components, the condition for a matrix Y ∈ gl(n + 1) to lie in gal therefore reads

Yt
A = 0, (Ya

b ) ∈ so(n). (3.5b)

Definition 3.4. The (orthochronous) inhomogeneous Galilei group in n + 1 dimensions is
the semidirect product

IGal = Gal⋉ Rn+1, (3.6)

where Gal acts on Rn+1 as in (3.3). Here, the Rn+1 part corresponds to spacetime
translations.3

3Note that the decomposition of the inhomogeneous group into the homogeneous subgroup and the
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3.2. Galilei structures

3.2. Galilei structures

Lemma 3.5. Let (M, τ, h) be a Galilei manifold and (eA) a Galilei basis at p ∈ M. Another
basis (ẽA) of Tp M is a Galilei basis iff the basis change matrix A ∈ GL(n + 1), defined by
ẽA = AB

AeB, is an element of the homogeneous Galilei group Gal (understood as a subgroup of
GL(n + 1) via (3.3)).

Proof. We first recall that if two bases of a vector space are related by ẽA = AB
AeB,

then the dual bases are related by ẽA = (A−1)A
BeB. Of course, we can also invert the

original relation to eA = (A−1)B
AẽB. The second basis (ẽA) of Tp M being a Galilei

basis means that

ẽt = τ|p = et, δabẽa ⊗ ẽb = h|p = δabea ⊗ eb . (3.7)

Expressing ẽt in terms of the eA in the first equation and the ea in terms of the ẽA in
the second one, these are equivalent to

(A−1)t
te

t + (A−1)t
aea = et, (3.8a)

i.e.

(A−1)t
t = 1, (A−1)t

a = 0, (3.8b)

and

δabẽa ⊗ ẽb = δab
(
(A−1)t

aẽt + (A−1)c
aẽc

)
⊗

(
(A−1)t

bẽt + (A−1)d
bẽd

)
= (A−1)c

aδab(A−1)d
bẽc ⊗ ẽd

= (A−1)a
cδcd(A−1)b

dẽa ⊗ ẽb , (3.8c)

i.e.

δab = (A−1)a
cδcd(A−1)b

d ⇐⇒ ((A−1)a
b) ∈ O(n). (3.8d)

Comparing to remark 3.3, we see that this means that A−1 is an element of Gal,
which is of course equivalent to A being an element of Gal.

translation normal subgroup depends on the choice of an arbitrary origin in spacetime. It is only
with respect to this origin that we may label a general inhomogeneous Galilei transformation as
homogeneous (namely if it fixes the origin). However, since in the following we need to interpret
‘standard Newtonian spacetime’ as the vector space Rn+1, and not as an affine space over an (n + 1)-
dimensional vector space with some extra structure, we introduced ‘the’ Galilei group in the above
way, which from a more fundamental perspective may be seen as kind of ‘too concrete’.
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3. Galilei manifolds via principal bundles

Definition 3.6. Let (M, τ, h) be a Galilei manifold. The set of all Galilei bases at a point
p ∈ M will be denoted by

Gp(M) := {(eA) : (eA) is a Galilei basis of Tp M}. (3.9)

The disjoint union
G(M) := ⨿

p∈M
Gp(M) (3.10)

is the Galilei frame bundle of (M, τ, h).4 We have a natural projection π : G(M) → M
sending any Galilei basis to the point at which it lives. According to lemma 3.5, by
basis change we can define a right action of the homogeneous Galilei group Gal on
G(M) which is free and whose orbits are the fibres Gp(M). Spelled out, it reads

(et, ea) · (R, k) = (et + kbeb, ebRb
a) (3.11)

for (eA) ∈ G(M) and (R, k) ∈ Gal.
G(M) can be made into a smooth principal bundle over M in essentially the same

way as the linear frame bundle F(M): around any point p ∈ M, we can find an open
neighbourhood U ⊂ M and smooth vector fields eA defined on U such that evaluated at
any point in U, they form a Galilei basis.5 Demanding that the corresponding bijective
maps

G(M)|U := π−1(U) → U × Gal, (3.12a)

Gq(M) ∋ (eB|q AB
A) 7→ (q, A) (3.12b)

for all such locally defined Galilei basis fields be homeomorphisms, we obtain a
topology on G(M), and then demanding that they all be diffeomorphisms, we obtain
a smooth structure on G(M). These maps then are local trivialisations of the Galilei
frame bundle, and it is a principal Gal-bundle over M.

A local section (eA) ∈ Γ(U, G(M)) of the Galilei frame bundle, i.e. n + 1 locally
defined vector fields that at any point are a Galilei basis, is a (local) Galilei frame on
(M, τ, h).

Notation 3.7. We will usually denote the unit timelike field of a Galilei frame as et =: v,
as was our usual notation for (local) choices of unit timelike future-directed vector
fields.

4Of course, the Galilei frame bundle depends on τ and h, but we will not acknowledge this in our
notation.

5Such a basis of vector fields may be constructed as follows: we choose any frame of vector fields (ẽA)
on some neighbourhood of p such that ẽt =: et is a unit timelike future-directed field, then project
the other fields ẽa onto space along ẽt and apply the Gram–Schmidt orthonormalisation process
with respect to (n)h to them. Due to smoothness of (n)h, the resulting fields ea are smooth; and by
construction, (eA) will then at each point be a Galilei basis.
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3.2. Galilei structures

Definition 3.8. Let G be a Lie group and π̂ : P → M a principal G-bundle. A reduction
of the structure group of P to a Lie subgroup (i.e. a closed subgroup) H ⊂ G is an
embedded submanifold Q ⊂ P that is invariant (as a set) under the action of H, such
that with the restricted projection

π := π̂|Q : Q → M (3.13)

and the restricted action of H it is a principal H-bundle.6

Intuitively, one can imagine the reduced bundle Q ‘sitting inside’ the larger bundle
P, such that locally with respect to local trivialisations, this looks just like H sitting
inside of G.

Construction 3.9. For a Galilei manifold (M, τ, h), by construction the Galilei frame
bundle G(M) is a reduction of the structure group of the linear frame bundle F(M) from
GL(n + 1) to the homogeneous Galilei group Gal, viewed as a subgroup of GL(n + 1).

Conversely, for an (n + 1)-dimensional manifold M, given a reduction G(M) of the
structure group of the frame bundle F(M) to Gal, there are a unique clock form τ and
space metric h making M into a Galilei manifold such that G(M) is the Galilei frame
bundle of (M, τ, h). Namely, given any local section (eA) ∈ Γ(U, G(M)) ⊂ Γ(U, F(M)),
we can define h and τ on U by h := δabea ⊗ eb and τ := et, where (eA) is the dual basis
to (eA). Smoothness of τ and h thus defined is immediate, and that they indeed define
a Galilei manifold follows directly by linear independence of the ea and by definition
of the dual basis. Finally, τ and h are well-defined, i.e. independent of the choice of
local section, due to Gal-invariance of G(M): any other local section (ẽA) is related to
(eA) by a Galilei transformation at each point, so by lemma 3.5 (ẽA|p) is also a Galilei
basis with respect to τ and h, i.e. τ = ẽt and h = δabẽa ⊗ ẽb.

Put differently, the data τ, h that make a manifold into a Galilei manifold are equival-
ent to a choice of which linear frames are Galilei frames.

6In general, a reduction of P along a Lie group homomorphism ϕ : H → G is a principal H-bundle
π : Q → M together with a smooth map f : Q → P such that

π̂ ◦ f = π (3.14a)

and

f (q · h) = f (q) · ϕ(h) (3.14b)

for all q ∈ Q, h ∈ H. However, if λ is the embedding of a Lie subgroup, then since f is compatible
with local trivialisations (by compatibility with the actions), this implies that f is an embedding and
we arrive, up to isomorphism, at the picture from our definition.
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3. Galilei manifolds via principal bundles

Definition 3.10. A Galilei structure on an (n + 1)-dimensional smooth manifold M is a
reduction G(M) of the structure group of the linear frame bundle F(M) from GL(n + 1)
to the homogeneous Galilei group Gal.

Notation 3.11. Since the Galilei frame bundle G(M) is a reduction of the structure
group of the linear frame bundle F(M), we obtain the tangent bundle TM as an
associated vector bundle,

TM ∼= G(M)×Gal Rn+1. (3.15)

The isomorphism is given by the canonical solder form θ ∈ Ω1(M, G(M)×Gal Rn+1) =

Hom(TM, G(M)×Gal Rn+1),

θp(vAeA|p) = [(eA|p), (vA)]. (3.16)

Using the representations of Gal induced by tensor representations of GL(n + 1), we
also obtain all tensor bundles of M as vector bundles associated to the Galilei frame
bundle; i.e. any tensor (field) on M can be represented, with respect to a chosen local
Galilei frame, by its components with respect to this frame.

When a Galilei frame (eA) is chosen, we denote tensor components with respect to
this frame by the same kind of indices (A) = (t, a) that we use for the frame vectors.
For example, we may locally write a vector field X ∈ Γ(TM) as

X = XAeA with XA = eA(X) = eA
µ Xµ, (3.17)

or a one-form α ∈ Ω1(M) as

α = αAeA with αA = α(eA) = eµ
Aαµ. (3.18)

So from a purely notational point of view, we can use the components eµ
A of a Galilei

frame and eA
µ of the dual frame to ‘convert’ tensor indices from ‘coordinate indices’ µ

to ‘Galilei frame indices’ A and back.

Construction 3.12. We now want to consider principal connections ω on the Galilei
frame bundle G(M) of a Galilei manifold (M, τ, h). The connection form ω is a one-
form on G(M) with values in the Galilei Lie algebra gal = so(n) i Rn, i.e. it can be
decomposed as

ω = (ωa
b, ϖa) ∈ Ω1(G(M), so(n) i Rn), (3.19)

with an so(n)-valued part (ωa
b) and an Rn-valued part (ϖa). The local connection

form7 ω with respect to a Galilei frame (eA) on U ⊂ M, i.e. the pullback of the
7Note that we denote the connection form on the principal bundle by boldface letters, and local connection

forms by the corresponding non-boldface letters. Note also that we denote principal connections by
the same letter ω that we earlier used to refer to the twist of a vector field. The meaning should always
be clear from context.
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3.2. Galilei structures

connection form ω ∈ Ω1(G(M), gal) along (eA), is then a gal-valued one-form on U,
which we can similarly decompose as

ω = (ωa
b , ϖa) ∈ Ω1(U, so(n) i Rn). (3.20)

Via remark 3.3, we may also understand this as a matrix-valued one-form (ωA
B) ∈

Ω1(U, gl(n + 1)) with

ωt
A = 0, (ωa

b) ∈ Ω1(U, so(n)), ωa
t = ϖa. (3.21)

The covariant derivative operator ∇ that is induced by ω on the tangent bundle
TM ∼= G(M)×Gal Rn+1 then acts as follows:8 for a vector field X = XAeA, we have

(∇X)A = dXA + ωA
B ⊗ XB, (3.23a)

i.e.

(∇X)t = dXt, (3.23b)

(∇X)a = dXa + ωa
b ⊗ Xb + ϖa ⊗ Xt. (3.23c)

The covariant derivative induced on T∗M acts on one-forms α = αAeA as

(∇α)A = dαA − ωB
A ⊗ αB , (3.24a)

i.e.

(∇α)t = dαt − ϖa ⊗ αa , (3.24b)

(∇α)a = dαa − ωb
a ⊗ αb . (3.24c)

On higher-degree tensors, the induced covariant derivative acts analogously: we get a
local connection form acting on each contravariant index and minus a local connection
form acting on each covariant index (since that’s the tensor representation of the Lie
algebra gl(n + 1)).

Now since for a Galilei frame we have τ = et, i.e. τA = δt
A, we can compute

(∇τ)A = dτA − ωB
A ⊗ τB

= 0 − ωB
Aδt

B = ωt
A

(3.21)
= 0; (3.25a)

8This follows from the general formula how a principal connection induces a covariant derivative on
associated vector bundles: given some representation ρ of Gal on a vector space V, on a local section
[(eA), v] of the associated vector bundle G(M)×ρ V the induced covariant derivative acts as

ω

∇[(eA), v] = [(eA), dv + ρ̇ω(v)] (3.22)

where ρ̇ : gal → gl(V) is the Lie algebra representation induced by ρ.

53



3. Galilei manifolds via principal bundles

and similarly from h = δabea ⊗ eb, i.e. hAB = δA
a δB

b δab, we get

(∇h)AB = dhAB︸ ︷︷ ︸
=0

+ ωA
C ⊗ hCB + ωB

C ⊗ hAC, (3.25b)

i.e.

(∇h)tA = (∇h)At = ωt
C ⊗ hAC (3.21)

= 0, (3.25c)

(∇h)ab = δcbωa
c + δacωb

c
(3.21)
= 0. (3.25d)

This means that the induced ∇ is a Galilei connection on (M, τ, h).
Conversely, given a Galilei connection ∇ on (M, τ, h), by going backwards through

the above calculations, we see that its local connection form (ωA
B) ∈ Ω1(U, gl(n + 1))

with respect to a Galilei frame (eA) on U, defined by

∇eA =: ωB
A ⊗ eB , (3.26)

satisfies (3.21), i.e. takes values in gal. Thus, ∇ gives rise to a principal connection ω

on the Galilei frame bundle G(M) by which it is induced.

So Galilei connections on a Galilei manifold are essentially the same as principal
connections on the Galilei frame bundle:

Proposition 3.13. Let (M, τ, h) be a Galilei manifold with Galilei frame bundle G(M).

(i) Given a principal connection ω on G(M), the induced covariant derivative operator ∇
on the tangent bundle TM ∼= G(M)×Gal Rn+1 is a Galilei connection on (M, τ, h).

(ii) Conversely, given a Galilei connection ∇ on (M, τ, h), it is induced by a (unique)
principal connection ω on G(M).

Proposition 3.14. Let (M, τ, h) be a Galilei manifold with Galilei frame bundle G(M), and
∇ a Galilei connection on (M, τ, h) with corresponding principal connection ω on G(M). Let
(eA) = (v, ea) be a local Galilei frame.

(i) The Newton–Coriolis form of ∇ with respect to v can be written in terms of the ‘boost
part’ of the local connection form and the dual frame as

Ω = δabϖa ∧ eb, (3.27a)

i.e. in components

Ωµν = δab2ϖ a
[µ eb

ν] . (3.27b)
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3.2. Galilei structures

Writing ϖ ν
µ := ϖ a

µ eν
a , this may be expressed as

Ωµν = 2ϖ[µν] , (3.28)

i.e. in some sense the Newton–Coriolis form is the antisymmetrisation of the boost part of
the local connection form.

(ii) Consider the associated bundle E := G(M)×Gal Rn+1, which is isomorphic to TM via
its canonical solder form θ ∈ Ω1(M, E). Taking the exterior covariant derivative of the
solder form with respect to ω yields the torsion T ∈ Ω2(M, TM) ∼= Ω2(M, E) of ∇, i.e.
we have

T = dωθ. (3.29)

(This is Cartan’s first structure equation, and is true for any connection on the linear
frame bundle or a reduction thereof.)

Proof. (i) Rewriting the definition of the Newton–Coriolis form with proposition 1.22

(ii) and the definition of the local connection form, we obtain

Ωµν = 2(∇[µvρ)hν]ρ

= 2 (∇[µeρ
t )︸ ︷︷ ︸

=ω A
[µ| t eρ

A|=ϖ c
[µ eρ

|c|

δabea
ν]e

b
ρ

= 2ϖ c
[µ| eρ

c δabea
|ν]e

b
ρ . (3.30)

Combining eρ
c eb

ρ = δb
c , this gives

Ωµν = 2ϖ c
[µ ea

ν]δabδb
c = 2ϖ b

[µ ea
ν]δab ; (3.31)

instead using ϖ c
µ eρ

c = ϖ
ρ

µ , we get

Ωµν = 2ϖ
ρ

[µ
ea

ν]δabeb
ρ︸ ︷︷ ︸

=hν]ρ

= 2ϖ[µν] . (3.32)

(ii) Writing the solder form as θ = [(eA), (θA)] in terms of its local representative
(θA) ∈ Ω1(U, Rn+1), the local representative of its exterior covariant derivative
dωθ = [(eA), ((dωθ)A)] is given by

(dωθ)A = dθA + ωA
B ∧ θB, (3.33)
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3. Galilei manifolds via principal bundles

in terms of the local connection form. By definition of the canonical solder form,
its local representative is just the dual frame, θA = eA. Therefore, applied to two
vector fields X, Y, we obtain

(dωθ)A(X, Y) = dθA(X, Y) + (ωA
B ∧ θB)(X, Y)

= X(θA(Y))− Y(θA(X))− θA([X, Y])

+ ωA
B(X)θB(Y)− ωA

B(Y)θ
B(X)

= dYA(X)− dXA(Y)− [X, Y]A + ωA
B(X)YB − ωA

B(Y)XB

= (∇Y)A(X)− (∇X)A(Y)− [X, Y]A

= (∇XY −∇YX − [X, Y])A

= (T(X, Y))A, (3.34)

where we used the coordinate-free formula for the exterior derivative and the fact
that θA(X) = eA(X) = XA.

Using the identification of the torsion as the exterior covariant derivative of the
canonical solder form, we obtain yet another way to show that the temporal torsion of
a Galilei connection on (M, τ, h) is dτ (proposition 1.6 (i)):

Tt = (dωθ)t = dθt︸︷︷︸
=det=dτ

+ωt
B︸︷︷︸

(3.21)
= 0

∧ θB = dτ (3.35)

The general properties of the curvature tensor of a Galilei manifold (proposition 1.6 (ii)),
namely the vanishing of the temporal curvature and the antisymmetry of the curvature
tensor with second index raised with h, also have a simple interpretation in terms of the
principal bundle formalism: in terms of the local curvature form R ∈ Ω2(U, gl(n + 1))
of ω, the curvature tensor is

1
2

Rµ
νρσdxρ ∧ dxσ = eµ

AeB
ν RA

B , (3.36)

and so these properties of Rµ
νρσ are equivalent (via remark 3.3) to the local curvature

form R taking values in gal ⊂ gl(n + 1).

Definition 3.15. Any change of local Galilei frame has the form

(v, ea) → (ṽ, ẽa) = (v, ea) · (R, k)−1 (3.37a)

for a local Gal-valued function (R, k). Such a change of frame is called a local Galilei
transformation. Spelling out the action via (3.11) and using (R, k)−1 = (R−1,−R−1k), it
reads

(v, ea) → (ṽ, ẽa) =
(

v − eb(R−1)b
aka, eb(R−1)b

a

)
. (3.37b)
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3.2. Galilei structures

This defines a left action on local Galilei frames by the group of local Gal-valued
functions.

Note that local Galilei boosts, i.e. local Galilei transformations with (R, k) = (1, k) for
some Rn-valued function k, have the form

(v, ea) → (ṽ, ẽa) = (v − eaka, ea). (3.38)

Comparing this to (1.34), we see that this is a Milne boost of the reference vector field v
with spacelike Milne boost vector field kµ = kaeµ

a – Milne boosts are local Galilei boosts!
Under local Galilei transformations of the frame, the dual frame and the local

connection forms transform as follows:

Proposition 3.16. (i) Under a local Galilei transformation (3.37) which is purely rotational,
i.e. with k = 0, the dual frame and local connection forms transform as

(τ, ea) → (τ, Ra
beb), (3.39a)

ωa
b → Ra

cωc
d(R−1)d

b + Ra
cd(R−1)c

b , (3.39b)

ϖa → Ra
bϖb. (3.39c)

(ii) Under a Milne boost, i.e. a local Galilei boost with parameter k, the dual frame and local
connection forms transform as

(τ, ea) → (τ, ea + kaτ), (3.40a)

ωa
b → ωa

b , (3.40b)

ϖa → ϖa − dka − ωa
bkb. (3.40c)

Proof. This follows easily from the general transformation of the dual basis under a
change of basis, and from the general formula

(σ · g−1)∗ω = g · (σ∗ω) · g−1 + g · d(g−1) (3.41)

for the change of local connection form under a change of local section for principal
bundles whose structure group is a matrix Lie group. Details are left as an exercise.

Using these results, we can now actually derive the transformation behaviour of the
covariant space metric

v
h and the Newton–Coriolis form Ω under Milne boosts, which

was just stated out of nowhere in the statement of proposition 1.19: we express
v
h and

Ω in terms of eA and ϖ (according to (1.38b) and (3.27a)), and use the transformation
behaviour (3.40) of those. Here, we also leave the details as an exercise.
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4. Semidirect extensions of principal
bundles

In this chapter, we will develop a natural construction that, given a semidirect product
H ⋉ N of two Lie groups, allows the extension of a principal bundle with structure
group the non-normal subgroup H of the product to a larger bundle with structure
group the product H ⋉ N, and classify connections on the extended bundle. This theory
will be used in the next chapter for the description of Newton–Cartan gravity in terms
of the so-called Bargmann group.

Construction 4.1. Let H, N be Lie groups and ρ : H → Aut(N) a Lie group homo-
morphism1. Let P π→ M be a principal H-bundle. We can extend P to a principal

H ⋉ N-bundle2 Q π̂→ M as follows: denoting by ρ̃ : H → Diff(H ⋉ N) the natural left
action of H on H ⋉ N by multiplication, i.e.

ρ̃h2(h1, n) := (h2, eN)(h1, n) = (h2h1, ρh2(n)), (4.1a)

we define Q as the associated bundle

Q := P ×ρ̃ (H ⋉ N). (4.1b)

The natural right action of H ⋉ N on itself (by multiplication) induces a free right action
on Q which is transitive on the fibres and compatible with the local trivialisations, thus
making Q into a principal bundle as desired. Explicitly, the action is given by

[p, (h, n)] · (h̃, ñ) := [p, (h, n)(h̃, ñ)] = [p, (hh̃, nρh(ñ))]. (4.2)

We also obtain natural bundle homomorphisms Q
β

⇄
γ

P satisfying β ◦ γ = idP,

namely
γ(p) = [p, (eH, eN)], β([p, (h, n)]) = ph . (4.3)

1We only need ρ to be a group homomorphism that is smooth in the sense that the joint map H × N ∋
(h, n) 7→ ρh(n) ∈ N is smooth, which makes sense also if Aut(N) is not a Lie group (which is the case
if the group of connected components of N is not finitely generated).

2Here we mean of course the semidirect product with respect to ρ, omitting it from the notation.
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4. Semidirect extensions of principal bundles

By construction, with respect to local trivialisations P
γ→ Q looks like the inclusion

H ↪→ H ⋉ N, such that it really exhibits Q as a principal bundle extension of P (i.e. P is
a reduction of the structure group of Q from H ⋉ N to H.)

We now want to classify connections on the extended bundle Q.

Lemma 4.2. We use the notation from construction 4.1. Let ω̂ ∈ Ω1(Q, hi n) be a connection
on Q. We decompose its pullback along γ as γ∗ω̂ = (ω, θ) with ω ∈ Ω1(P, h) and θ ∈
Ω1(P, n). Then ω is a connection and θ is a ρ̇-tensorial form on P, where ρ̇ : H → Aut(n) is
the representation induced by ρ.

Proof. γ is H-equivariant, i.e. for any h ∈ H, we have γ ◦ Rh = R(h,eN) ◦ γ. Thus, the
Ad-equivariance of ω̂ implies

R∗
h(γ

∗ω̂) = (γ ◦ Rh)
∗ω̂

= (R(h,eN) ◦ γ)∗ω̂

= γ∗(R∗
(h,eN)

ω̂)

= γ∗(Ad(h−1,eN) ◦ ω̂)

= Ad(h−1,eN) ◦ (γ
∗ω̂). (4.4)

Considering the form of the adjoint representation for a semidirect product (proposition
A.4), this means that

R∗
hω = Adh−1 ◦ ω , (4.5a)

R∗
hθ = ρ̇h−1 ◦ θ . (4.5b)

Now considering the fundamental vector fields of the actions on the principal bundles,
the equivariance of γ implies that for X ∈ h, we have

Dγ(X̃(p)) = Dγ

(
d
dt

p exp(tX)

∣∣∣∣
t=0

)
=

d
dt

γ(p exp(tX))

∣∣∣∣
t=0

=
d
dt

γ(p) · (exp(tX), eN)

∣∣∣∣
t=0

= (̃X, 0)(γ(p)), (4.6)

i.e. Dγ ◦ X̃ = (̃X, 0) ◦ γ. Therefore, the condition ω̂
(
(̃X, Y)(q)

)
= (X, Y) for (X, Y) ∈

h i n implies

(γ∗ω̂)(X̃(p)) = ω̂(Dγ(X̃(p))) = ω̂
(
(̃X, 0)(γ(p))

)
= (X, 0), (4.7)
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i.e. ω satisfies
ω(X̃) = X (4.8)

and θ vanishes on vertical vectors.

Lemma 4.3. The above correspondence between connections on Q and pairs of connections and
ρ̇-tensorial one-forms on P is bijective, i.e. given a connection ω ∈ Ω1(P, h) and a ρ̇-tensorial
θ ∈ Ω1

ρ̇(P, n), there is a unique connection ω̂ ∈ Ω1(Q, h i n) such that γ∗ω̂ = (ω, θ).

Proof. Let q ∈ Q, and write it in the (unique) form q = [p, (eH, n)]. For v ∈ TqQ, we
want to define ω̂(v). Since q = [p, (eH, eN)] · (eH, n) = γ(p) · (eH, n), we need

ω̂q(v) = (R∗
(eH ,n)ω̂)γ(p)

(
DR(eH ,n−1)(v)

)
= Ad(eH ,n−1)

(
ω̂γ(p)

(
DR(eH ,n−1)(v)

))
. (4.9)

Thus we need only consider the case q = γ(p). So let v ∈ Tγ(p)Q. Such a v is not
necessarily in the image of Dγ, but since the ‘new directions’ in TQ (new compared to
TP) are ‘along N’ in the fibres, v can be uniquely written as

v = Dγ(v̂) + (̃0, Y)(γ(p)) (4.10a)

with v̂ ∈ TpP and Y ∈ n. In the case v̂ = 0, we need ω̂(v) = (0, Y), and in the case
Y = 0, we need ω̂γ(p)(Dγ(v̂)) = (γ∗ω̂)p(v̂) = (ωp(v̂), θp(v̂)). Thus ω̂ is required to be
given by

ω̂γ(p)(v) = (ωp(v̂), θp(v̂) + Y) (4.10b)

on the image of γ.
We now have to check that the ω̂ thus defined – via (4.10) on the image of γ and

extended to all of Q via (4.9) – is really a connection. Ad-equivariance by N holds
by construction. Ad-equivariance by H on the image of γ can be seen as follows: for

v = Dγ(v̂) + (̃0, Y)(γ(p)) ∈ Tγ(p)Q, we have

DR(h,eN)(v) = DR(h,eN)(Dγ(v̂)) + DR(h,eN)

(
(̃0, Y)(γ(p))

)
= Dγ(DRh(v̂)) +

˜︷ ︸︸ ︷
Ad(h−1,eN)(0, Y)(γ(p) · (h, eN))

= Dγ(DRh(v̂)) +
˜︷ ︸︸ ︷

Ad(h−1,eN)(0, Y)(γ(ph))

= Dγ(DRh(v̂)) +
˜︷ ︸︸ ︷

(0, ρ̇h−1(Y))(γ(ph)), (4.11)

where we used H-equivariance of γ and the general fact that for fundamental vector

fields of right actions, we have (Rg−1)∗X̃ = Ãdg(X) (exercise!), implying DRg(X̃(p)) =
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4. Semidirect extensions of principal bundles

˜Adg−1(X)(pg). Using this, we obtain

(R∗
(h,eN)

ω̂)γ(p)(v) = ω̂γ(ph)(DR(h,eN)(v))

=
(
ωph(DRh(v̂)), θph(DRh(v̂)) + ρ̇h−1(Y)

)
=

(
Adh−1(ωp(v̂)), ρ̇h−1(θp(v̂) + Y)

)
= Ad(h−1,eN)(ω̂γ(p)(v)) (4.12)

where we used the Ad-equivariance of ω and the ρ̇-equivariance of θ. Combined, the
Ad-equivariance of ω̂ on the whole of Q follows: for q = γ(p) · (eH, n), we have

(R∗
(h,eN)

ω̂)q = ω̂q·(h,eN) ◦ DR(h,eN)

= ω̂γ(ph)·(eH , ρh−1 (n)) ◦ DR(h,eN)

(4.9) = Ad(eH , ρh−1 (n−1)) ◦ ω̂γ(ph) ◦ DR(eH , ρh−1 (n−1)) ◦ DR(h,eN)︸ ︷︷ ︸
=DR

(h,n−1)=DR
(eH ,n−1)·(h,eN )

= Ad(eH , ρh−1 (n−1)) ◦ ω̂γ(ph) ◦ DR(h,eN) ◦ DR(eH ,n−1)

(4.12) = Ad(eH , ρh−1 (n−1)) ◦ Ad(h−1,eN) ◦ ω̂γ(p) ◦ DR(eH ,n−1)

= Ad(h−1,eN) ◦ Ad(eH ,n−1) ◦ ω̂γ(p) ◦ DR(eH ,n−1)

(4.9) = Ad(h−1,eN) ◦ ω̂q . (4.13)

Finally, we have to check that ω̂ take the correct value on fundamental vector fields.
Since we already established Ad-equivariance, it is enough to show this on the image

of γ. On fundamental vectors of the form (̃0, Y)(γ(p)), our form ω̂ takes the value

(0, Y) by construction; and for (̃X, 0)(γ(p)), we finally have

ω̂
(
(̃X, 0)(γ(p))

)
= ω̂

(
d
dt

γ(p) · exp(t(X, 0))
∣∣∣∣
t=0

)
= ω̂

(
d
dt

γ(p) · (exp(tX), eN)

∣∣∣∣
t=0

)
= ω̂

(
d
dt

γ(p exp(tX))

∣∣∣∣
t=0

)
= ω̂(Dγ(X̃(p)))

(4.10) = (ω(X̃(p)), θ(X̃(p)))

= (X, 0). (4.14)
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Theorem 4.4. Let H, N be Lie groups, ρ : H → Aut(N) a Lie group homomorphism, and
P π→ M be a principal H-bundle. As in construction 4.1, let ρ̃ : H → Diff(H ⋉ N) be the
natural left multiplication action of H on H ⋉ N, let Q = P ×ρ̃ (H ⋉ N) the ‘semidirect
extension’ of P via ρ, and γ : P → Q the natural embedding.

Then connections ω̂ ∈ Ω1(Q, h i n) on Q correspond bijectively to pairs of connections
ω ∈ Ω1(P, h) and ρ̇-tensorial one-forms θ ∈ Ω1

ρ̇(P, n) on P via the pullback condition

γ∗ω̂ = (ω, θ), (4.15)

where ρ̇ : H → Aut(n) is the representation induced by ρ.
In this situation, the curvature form R̂ ∈ Ω2(Q, h i n) of ω̂ satisfies

γ∗R̂ = (R, dωθ+ 1
2 [θ∧, θ]), (4.16)

where R ∈ Ω2(p, h) is the curvature form of ω.

Proof. The bijective correspondence was established in lemmas 4.2 and 4.3. Pulling
back the structure equation R̂ = dω̂ + 1

2 [ω̂ ∧, ω̂] with γ and using the explicit form of
the semidirect sum Lie bracket, we obtain

γ∗R̂ = d(γ∗ω̂) + 1
2 [γ

∗ω̂ ∧, γ∗ω̂]

= d(ω, θ) + 1
2 [(ω, θ) ∧, (ω, θ)]

= (dω, dθ) + 1
2 ([ω ∧, ω], [θ∧, θ] + 2ρ̇′ω ∧ θ)

= (R, dωθ+ 1
2 [θ∧, θ]). (4.17)

We can now apply this general theory to the classical example of the affine frame
bundle of a manifold.

Example 4.5. We consider the above situation in the case that P = F(M) is the linear
frame bundle of an n-dimensional manifold, i.e. H = GL(n), and we let N = Rn and
ρ : GL(n) → Aut(Rn) the defining representation; i.e. H ⋉ N = GL(n)⋉ Rn is the affine
group in n dimensions. The extended bundle Q = F(M) ×GL(n) (GL(n)⋉ Rn) from
above is then naturally isomorphic to the affine frame bundle Aff(M) of M, whose fibres
are given by

Affx(M) = Fx(M)× Tx M, (4.18)

i.e. whose elements are ‘affine bases’ of tangent spaces. The isomorphism is given by

Q ∋ [(eA), (1, (yA))] 7→ ((eA), yBeB) ∈ Aff(M) (4.19)

A connection on Affx(M), or equivalently one on Q, is called a generalised affine
connection on M. According to theorem 4.4, such a connection ω consists of a usual
linear connection ω on F(M) and a tensorial form θ ∈ Ω1

GL(n)(F(M), Rn).
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4. Semidirect extensions of principal bundles

The tensorial form θ corresponds to a form on the base manifold valued in an
associated vector bundle,

θ ∈ Ω1(M, F(M)×GL(n) Rn), (4.20a)

locally defined by
θ = [σ, σ∗θ] (4.20b)

for local sections σ. If this θ is the canonical solder form of F(M)×GL(n) Rn, then the
generalised affine connection we started with is called an affine connection on Aff(M).

For a generalised affine connection given by (ω, θ), according to theorem 4.4 the
‘translational part’ of its curvature is given by the exterior covariant derivative dωθ ∈
Ω2

GL(n)(F(M), Rn), which corresponds to a form dωθ ∈ Ω2(M, F(M)×GL(n) Rn) on the
base. In the case of an affine connection, i.e. if θ is the canonical solder form, according
to Cartan’s first structure equation (proposition 3.14 (ii)) this is the torsion of ω (up to
the identification F(M)×GL(n) Rn ∼= TM via θ).
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5. Bargmann structures

In this chapter, we will use the machinery of ‘semidirect extensions’ developed in the
previous chapter to describe the geometry of Galilei manifolds in terms of the so-called
Bargmann group. We will see how this allows for a description of the coupling of
massive matter to Newton–Cartan gravity via variational principles, and how this
allows for a computationally easier description of the limit from GR to Newton–Cartan
gravity than that we encountered before.

5.1. The Bargmann group

Definition 5.1. The Bargmann group in n + 1 dimensions is the semidirect product

Barg = Gal⋉ρ (R
n+1 × R), (5.1a)

where the homomorphism ρ : Gal → Aut(Rn+1 × R) is given by

ρ(R,k)(y
A, φ) =

(
yt, Ra

byb + ytka, φ +
1
2
|k|2yt + kaRa

byb
)

. (5.1b)

From (5.1b), we directly obtain the induced homomorphisms ρ̇ : Gal → Aut(Rn+1 ⊕
R) and ρ̇′ : gal → Der(Rn+1 ⊕ R) as

ρ̇(R,k)(y
A, φ) =

(
yt, Ra

byb + ytka, φ + 1
2 |k|

2yt + kaRa
byb

)
, (5.2)

ρ̇′(X,k)(y
A, φ) =

(
((X, k)y)A, kaya

)
(5.3)

(check this as an exercise!).
The Bargmann algebra barg = gal i (Rn+1 ⊕ R) is a one-dimensional central exten-

sion of the inhomogeneous Galilei algebra igal = gal i Rn+1, i.e. we have a short exact
sequence

0 → R → barg → igal → 0 (5.4)

of Lie algebras where the image of R in barg lies in the centre (i.e. commutes with
all elements). In fact, up to isomorphism and choice of a constant prefactor in the
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5. Bargmann structures

second component of 5.3, the Bargmann algebra is, for n ̸= 2, essentially the unique
one-dimensional non-trivial central extension of the inhomogeneous Galilei algebra.1

5.2. Extending Galilei to Bargmann structures

Construction 5.2. Let (M, τ, h) be a Galilei manifold, and G(M) its Galilei frame
bundle. Using construction 4.1, we extend G(M) to a principal Barg-bundle B(M) =

G(M) ×Gal Barg. According to theorem 4.4, connections ω̂ on B(M) are in one-to-
one correspondence with pairs (ω, Θ) of connections ω and ρ̇-tensorial one-forms
Θ ∈ Ω1

ρ̇(G(M), Rn+1 ⊕ R) on G(M) via the pullback condition

γ∗ω̂ = (ω, Θ), (5.5a)

where γ : G(M) → B(M) is the natural embedding and ρ̇ : Gal → Aut(Rn+1 ⊕ R) is
the induced representation (5.2). Furthermore, in this situation the pullback of the
curvature form R̂ of ω̂ is given by the curvature form R of ω and the exterior covariant
derivative of Θ with respect to ω,

γ∗R̂ = (R, dωΘ). (5.5b)

We further decompose
Θ = (θ, a) (5.6)

with θ ∈ Ω1(G(M), Rn+1) and a ∈ Ω1(G(M)). Due to R ⊂ Rn+1 ⊕ R being a ρ̇-
invariant subspace, we may view the Rn+1-valued part θ as transforming under the
quotient representation Gal → GL((Rn+1 ⊕ R)/R) ∼= GL(n + 1), which is the usual
representation of Gal on Rn+1 (as in remark 3.3). This means that θ is by itself a
tensorial form

θ ∈ Ω1
Gal(G(M), Rn+1), (5.7)

which naturally corresponds to an associated-bundle-valued form

θ ∈ Ω1(M, G(M)×Gal Rn+1) (5.8)

on our Galilei manifold. If this is the canonical solder form of G(M)×Gal Rn+1, then
we call a ∈ Ω1(G(M)) a Bargmann structure2 on (M, τ, h).

1In n = 2 spatial dimensions, the space of 1d central extensions of the inhomogeneous Galilei algebra is
three-dimensional instead of one-dimensional.

2Usually, given a Lie group G, by a G structure on a manifold M one means a reduction of the structure
group of the linear frame bundle F(M) from GL(dim M) to G. However, in the case of the Bargmann
group no misunderstandings can arise, since the Bargmann group in n + 1 dimensions is not naturally
a subgroup of GL(n + 1).
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5.2. Extending Galilei to Bargmann structures

Summed up, we have the following:

Definition 5.3. A Bargmann structure on a Galilei manifold (M, τ, h) is a one-form
a ∈ Ω1(G(M)) on the Galilei frame bundle that together with the tensorial form
θ ∈ Ω1

Gal(G(M), Rn+1) corresponding to the canonical solder form of G(M)×Gal Rn+1

combines into a ρ̇-tensorial form (θ, a) ∈ Ω1
ρ̇(G(M), Rn+1 ⊕ R).

In turn, together with a Galilei connection ω ∈ Ω1(G(M), gal), this (θ, a) would give
a ‘Bargmann connection’ ω̂ on B(M). Note however that we consider the choice of
Galilei connection ω not to be part of the choice of Bargmann structure.

Construction 5.4. Given a Bargmann structure a on a Galilei manifold (M, τ, h), the
tensorial form Θ = (θ, a) ∈ Ω1

ρ̇(G(M), Rn+1 ⊕ R) corresponds to an associated-bundle-
valued form Θ ∈ Ω1(M, G(M)×ρ̇ (Rn+1 ⊕ R)). The local representative of this form
with respect to a local Galilei frame σ = (eA) defined on an open set U ⊂ M, i.e. the
pullback

(τ, ea, a) = σ∗Θ ∈ Ω1(U, Rn+1 ⊕ R) (5.9a)

along the frame, using which we can locally express Θ as

Θ = [σ, (τ, ea, a)] ∈ Ω1
(

U, G(M)×ρ̇ (R
n+1 ⊕ R)

)
, (5.9b)

we call an extended coframe following [GPR15]. (Note that since θ corresponds to
the canonical solder form, its local representative with respect to the local frame
σ = (eA) = (v, ea) is given by the dual frame (τ, ea).)

We now consider the exterior covariant derivative dωΘ of the form Θ, locally repres-
ented by the extended coframe, with respect to a Galilei connection ω. According to
(5.5b), it corresponds to the Rn+1 ⊕ R-valued part of the curvature of the ‘Bargmann
connection’ ω̂ on B(M) given by ω and Θ. Since the Rn+1-valued part of Θ corresponds
to the canonical solder form, according to Cartan’s first structure equation (proposition
3.14 (ii)) the Rn+1-valued part of dωΘ corresponds to the torsion of ω. Following
[GPR15], we will therefore call dωΘ the connection’s extended torsion with respect to
the Bargmann structure, and denote its local components with respect to a local frame
σ = (eA) by

(TA, f ) := σ∗(dωΘ). (5.10)

Its R-valued part f , which of course does not define an invariant geometric object on
its own, we call the mass torsion.3

3This name derives from the central direction of the Bargmann algebra being related to the mass of
massive ‘Galilei-invariant’ (in fact locally Gal × U(1)-invariant, as we will see later) matter fields.
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Definition 5.5. Let (M, τ, h) be a Galilei manifold and a ∈ Ω1(G(M)) a Bargmann
structure on it. The extended coframe with respect to a local Galilei frame σ = (eA) ∈
Γ(U, G(M)) is (τ, ea, a) ∈ Ω1(U, Rn+1 ⊕ R) with a = σ∗a.

For a Galilei connection ω, its extended torsion with respect to the Bargmann structure
a is the form dωΘ ∈ Ω2(M, G(M)×ρ̇ (Rn+1 ⊕ R)), where Θ corresponds to the form
Θ = (θ, a) ∈ Ω1

ρ̇(G(M), Rn+1 ⊕ R) with θ corresponding to the canonical solder form.
In the local representative (TA, f ) := σ∗(dωΘ), the R part f is called the mass torsion.

Proposition 5.6. Let (M, τ, h) be a Galilei manifold and a ∈ Ω1(G(M)) a Bargmann
structure on it.

(i) Under local rotations of Galilei frames, the R part of the extended coframe and the mass
torsion f are invariant.

Under local Galilei boosts (eA) → (ẽA) = (eA) · (1, k)−1 = (v − kaea, ea) they trans-
form as

a → a + kaea +
1
2
|k|2τ, (5.11a)

f → f + kaTa +
1
2
|k|2dτ. (5.11b)

(ii) The mass torsion is explicitly given by

f = da + ϖa ∧ ea. (5.12)

Proof. (i) The extended coframe transforms according to ρ̇; i.e. for a general change
of frame we have the transformation behaviour (τ, ea, a) → (τ, ẽa, ã) = ((eA) ·
(R, k)−1)∗Θ = ρ̇(R,k)((eA)

∗Θ). Using the explicit form (5.2) of ρ̇, for k = 0 we
obtain ã = a; and for R = 1 we obtain the behaviour in the statement of the
proposition.

The same applies for the extended torsion (TA, f ).

(ii) Using the explicit form (5.3) of ρ̇′, we obtain

(TA, f ) = σ∗(dωΘ)

= d(eA, a) + ρ̇′(ω,ϖ) ∧ (eA, a)

= (deA + ωA
B ∧ eB, da + ϖa ∧ ea), (5.13)

as stated.
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Corollary 5.7. On a Galilei manifold with Bargmann structure, the Newton–Coriolis form of a
Galilei connection may be expressed in terms of the extended coframe and the mass torsion as

Ω = f − da. (5.14)

Proof. This follows directly by combining proposition 5.6 (ii) with proposition 3.14 (i)
(which stated Ω = ϖa ∧ ea).

Theorem 5.8. On a Galilei manifold with a chosen Bargmann structure, Galilei connections
are uniquely determined by their extended torsion.

In particular, if the Galilei manifold has absolute time, there is a unique Galilei connection
with vanishing extended torsion.4 This connection is Newtonian.

Proof. Since according to the classification theorem (theorem 1.16) Galilei connections
are determined by their torsion and Newton–Coriolis form, this follows directly from
corollary 5.7.

In the case of vanishing extended torsion, the connection being Newtonian follows
by dΩ = −dda = 0 (using theorem 1.27).

Remark 5.9. If on a Newtonian manifold (M, τ, h,∇) we have a globally defined unit
timelike vector field v such that the Newton–Coriolis form of ∇ with respect to v is
exact, i.e. we can write Ω = −da, then this a gives rise to a Bargmann structure a
whose corresponding extended-torsion-free Galilei connection is the original Newtonian
connection ∇.

In fact, a may be lifted to G(M) to give the desired Bargmann structure a: even
though Galilei frames need not globally exist, around any point in M we may choose
a Galilei frame whose timelike vector field is v; and since the local representative
of a Bargmann structure is invariant under local frame rotations (i.e. local Galilei
transformations that leave the timelike vector invariant) according to proposition 5.6 (i),
our globally defined a has the correct transformation behaviour. The mass torsion of ∇
with respect to a and v vanishes by construction, so ∇ has vanishing extended torsion.

If Ω is not exact, then by the Poincaré lemma we still get local forms a such that
Ω = −da (since Ω is closed by ∇ being Newtonian), but those don’t ‘patch up’ to a
global Bargmann structure.

Note that when obtaining a Newtonian manifold as a formal c → ∞ limit of a
Lorentzian manifold as in theorem 2.35, according to remark 2.36 the Newton–Coriolis
form of the limiting connection ∇ with respect to the unit timelike vector field v

4Note that the vanishing of the extended torsion is a statement that makes sense independently of the
choice of Galilei frame. This follows either by the transformation behaviour (5.11b), or by noting that
vanishing extended torsion just means dωΘ = 0, which is a global statement.
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that naturally arises from the formal power series expansion in c−1 is of the form
Ω = τ ∧ dϕ = −d(ϕτ), so we obtain a Bargmann structure with local representative
a = ϕτ.

The same is true for Newtonian spacetimes with absolute rotation that arise from
geometrisation of solutions of standard Newtonian gravity, i.e. by performing the
converse construction of the Trautman recovery theorem (theorem 2.29) as in remark
2.23: the constructed Newton–Coriolis form is again Ω = τ ∧ dϕ = −d(ϕτ), so we get
a Bargmann structure with a = ϕτ.

Remark 5.10. On a Galilei manifold (M, τ, h) we have an R gauge freedom for the
Bargmann structure, corresponding to the R direction in the Bargmann group: given
any R-valued function χ on M, we obtain a gauge transformation fχ of the prin-

cipal Barg-bundle B(M)
π̂→ M, i.e. a fibre-preserving principal bundle automorphism

fχ : B(M) → B(M), as
fχ(p) := p · (1, 0, 0, χ ◦ π̂). (5.15a)

Given a connection ω̂ on B(M), we may act on it (actively!) with the gauge transforma-
tion fχ, giving the new connection

f ∗χ ω̂ = ω̂ + (0, 0, 0, π̂∗(dχ)) (5.15b)

For the case of ω̂ given by a Galilei connection ω and a Bargmann structure a on
(M, τ, h), this means that applying the gauge transformation given by χ, we obtain a
new Bargmann structure

a → a + π∗(dχ), (5.15c)

which on M is locally represented by

a → a + dχ. (5.15d)

Note that with respect to two Bargmann structures which are related to each other by
such an R gauge transformation, a Galilei connection has the same extended torsion,
since f = da + Ω = d(a + dχ) + Ω.

In particular, the Bargmann structures constructed in remark 5.9 from Newtonian
connections with globally exact Newton–Coriolis forms are unique up to such a gauge
transformation.

5.3. Variational description of coupling to massive matter

Construction 5.11 (The massive point particle). Let (M, τ, h) be a Galilei manifold with
a Bargmann structure a. We consider the following action functional for a timelike
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5.3. Variational description of coupling to massive matter

worldline γ:

S[γ] =
∫ λ f

λi

dλ

(
1
2

m v
h(γ′, γ′)

τ(γ′)
− ma(γ′)

)
=

∫
γ

(
1
2

m v
h(·, ·)

τ
− ma

)
(5.16)

Note that the first summand in the integrand in fact defines a one-form along the curve,

since for any µ ∈ R we have v
h(µ·γ′,µ·γ′)

τ(µ·γ′) = µ · v
h(γ′,γ′)

τ(γ′) . Since the action is an integral over
a one-form, it is reparametrisation invariant, i.e. depends on γ only through its image.

The expression (5.16) for the action explicitly depends on the choice of Galilei frame:
both the covariant space metric

v
h and the local representative a of the Bargmann

structure depend on the choice of unit timelike vector field v. In fact, however, the
action is independent of the choice of frame: under a local Galilei boost (Milne boost)
v → v − kaea,

v
h and a transform as

v
h →

v
h + (kaea)⊗ τ + τ ⊗ (kaea) + |k|2τ ⊗ τ, (5.17a)

a → a + kaea +
1
2
|k|2τ (5.17b)

according to proposition 1.19 and proposition 5.6 (i); therefore, the integrand transforms
as

1
2

m v
h(γ′, γ′)

τ(γ′)
− ma(γ′) → 1

2
m
(

v
h(γ′, γ′)

τ(γ′)
+�����2kaea(γ′) +

XXXXX|k|2τ(γ′)

)
− m

(
a(γ′) +�����kaea(γ′) +

HHH
HHH

1
2
|k|2τ(γ′)

)
=

1
2

m v
h(γ′, γ′)

τ(γ′)
− ma(γ′). (5.17c)

In the case of a Newtonian spacetime with absolute rotation that arose from a solution
of the standard formulation of Newtonian gravity with a = ϕτ (as in remark 5.9), the
action is just the usual action of a point particle in Newtonian mechanics, namely
the integral over kinetic minus gravitational potential energy, S =

∫
dt( 1

2 mδabγ̇aγ̇b −
mϕ). Thus one might say that the action (5.16) arises from the action of a particle in
Newtonian mechanics by ‘geometrisation’.

Note that the action (5.16) is not invariant under R gauge transformations of the
Bargmann structure as in remark 5.10. However, under a gauge transformation by χ,
it transforms as S[γ] → S[γ]− m

∫
γ dχ = S[γ]− m(χ(γ f )− χ(γi)), i.e. by a boundary

term.
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5. Bargmann structures

Now we want to determine the equations of motion / Euler–Lagrange equations that
arise from the above action by demanding it to be stationary under variations of γ with
fixed endpoints. Computing the variation of the action, we first obtain

δS =
∫

dλ

[
1
2

m
(δhµν)γ′µγ′ν

τ(γ′)
+ m

hµνγ′µδγ′ν

τ(γ′)
− m(δaµ)γ

′µ − maµδγ′µ

− 1
2

m v
h(γ′, γ′)

(τ(γ′)2)

(
(δτσ)γ

′σ + τρδγ′ρ) ]
=

∫
dλ

[
1
2

mδγρ (∂ρhµν)γ′µγ′ν

τ(γ′)
− mδγν d

dλ

(
hµνγ′µ

τ(γ′)

)
− mδγρ(∂ρaµ)γ

′µ + mγ′ρ(∂ρaµ)δγµ︸ ︷︷ ︸
=mδγρ(da)µργ′µ

− 1
2

m v
h(γ′, γ′)

(τ(γ′)2)
δγρ(∂ρτσ)γ

′σ

+
1
2

mδγρ d
dλ

(
v
h(γ′, γ′)

(τ(γ′)2)
τρ

)]
, (5.18)

where we have used partial integration and vanishing of the variation δγµ on the
boundary to express all terms involving the derivative δγ′µ in terms of δγµ itself.
Continuing the calculation, we have

d
dλ

(
hµνγ′µ

τ(γ′)

)
=

1
τ(γ′)

(∂ρhµν)γ
′ργ′µ +

1
τ(γ′)

hµνγ′′µ + hµνγ′µ d
dλ

(
1

τ(γ′)

)
, (5.19a)

d
dλ

(
v
h(γ′, γ′)

(τ(γ′)2)
τρ

)
= v

h(γ′, γ′)

(τ(γ′)2)
(∂στρ)γ

′σ + τρ
d

dλ

(
v
h(γ′, γ′)

(τ(γ′)2)

)
. (5.19b)

For the respective last terms of these expressions we further obtain

d
dλ

(
1

τ(γ′)

)
= − 1

(τ(γ′))2
dτ(γ′)

dλ
, (5.19c)

d
dλ

(
v
h(γ′, γ′)

(τ(γ′)2)

)
=

1
(τ(γ′))2

(
(∂κhµν)γ

′κγ′µγ′ν + 2hµνγ′µγ′′ν)
− 2

1
(τ(γ′))3

dτ(γ′)

dλ v
h(γ′, γ′). (5.19d)

Into these we could further insert

dτ(γ′)

dλ
= (∂στµ)γ

′σγ′µ + τµγ′′µ, (5.20)

but will refrain from doing so since the corresponding terms will not contribute to our
end result.
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5.3. Variational description of coupling to massive matter

Inserting (5.19) into (5.18), the action variation in the general case is given by

δS =
∫

dλ δγρ

[
− m

1
τ(γ′)

hµργ′′µ − 1
2

m(2∂νhµρ − ∂ρhµν)
γ′µγ′ν

τ(γ′)
+ m(da)µργ′µ

− 1
2

m(dτ)ρσγ′σ v
h(γ′, γ′)

(τ(γ′)2)
+ mhµργ′µ 1

(τ(γ′))2
dτ(γ′)

dλ

+
1
2

mτρ

(
1

(τ(γ′))2

(
(∂κhµν)γ

′κγ′µγ′ν + 2hµνγ′µγ′′ν)
− 2

1
(τ(γ′))3

dτ(γ′)

dλ v
h(γ′, γ′)

)]
. (5.21)

We now assume that γ is parametrised by time along γ as defined by τ, i.e. we have
γ(t) with τ(γ̇(t)) = 1. In particular this implies dτ(γ̇)

dt = 0. Therefore, the equation of
motion that we may read off from (5.21) simplifies to

0 = hµργ̈µ +
1
2
(2∂νhµρ − ∂ρhµν)γ̇

µγ̇ν − (da)µργ̇µ +
1
2
(dτ)ρσγ̇σ

v
h(γ̇, γ̇)

− 1
2

τρ

(
(∂κhµν)γ̇

κγ̇µγ̇ν + 2hµνγ̇µγ̈ν
)

. (5.22)

Raising the free index, we obtain

0 = Pρ
σ γ̈σ +

1
2

hρσ(2∂νhµσ − ∂σhµν)γ̇
µγ̇ν − (da) ρ

µ γ̇µ +
1
2
(dτ)

ρ
σγ̇σ

v
h(γ̇, γ̇). (5.23)

Let now ∇ be an arbitrary Galilei connection on (M, τ, h). Using the classification
theorem (theorem 1.16), we obtain

Pρ
σ Γσ

µνγ̇µγ̇ν =
1
2

hρσ(2∂νhµσ − ∂σhµν)γ̇
µγ̇ν − T ρ

µν γ̇µγ̇ν + Ω ρ
µ γ̇µ. (5.24)

Comparing this to the equation of motion (5.23) and using Ω = f − da, we see that the
equation of motion is equivalent to

0 = Pρ
σ (γ̈σ + Γσ

µνγ̇µγ̇ν)︸ ︷︷ ︸
=(∇γ̇γ̇)σ

+T ρ
µν γ̇µγ̇ν − f ρ

µ γ̇µ +
1
2
(dτ)

ρ
σγ̇σ

v
h(γ̇, γ̇). (5.25)

Combined with τ(∇γ̇γ̇) = ∇γ̇(τ(γ̇)) = ∇γ̇(1) = 0, we thus see that for curves
parametrised by time along them (as defined by τ), the equation of motion arising from
the above action is

(∇γ̇γ̇)ρ = −T ρ
µν γ̇µγ̇ν + f ρ

µ γ̇µ − 1
2
(dτ)

ρ
σγ̇σ

v
h(γ̇, γ̇). (5.26)
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5. Bargmann structures

In the case of an extended-torsion-free connection, we have thus obtained the geodesic
equation – i.e. the equation of motion for a massive test particle in Newton–Cartan
gravity – from a variational principle. Note that the use of the Bargmann structure was
crucial for this. Morally speaking, the Bargmann structure allows us to speak about the
Newtonian gravitational potential ϕ, but in proper geometric terms.

Note that even though by parametrising the curve by time along it we may write the
action in the easier form

S[γ] =
∫ t f

ti

dt
(

1
2

mhµνγ̇µγ̇ν − maµγ̇µ

)
, (5.27)

in the general case this is misleading for calculating the variation of the action, since for
fixed endpoints of the curve the time along it may change under variation if dτ ̸= 0.

Construction 5.12 (The Schrödinger field). The standard free ‘non-relativistic’ Schrödinger
equation with mass m is

ih̄∂tΨ = − h̄2

2m
δab∂a∂bΨ (5.28)

for a C-valued function Ψ. It may be obtained by variation of the action functional

Sfree[Ψ] =
∫

dtdnx
(

ih̄m(Ψ ∂tΨ − ∂tΨ Ψ)− h̄2δab ∂aΨ ∂bΨ
)

. (5.29)

Here, we understand the Schrödinger equation as a classical field equation.5

We now want to couple the Schrödinger field to Newtonian gravity, described
geometrically by Newton–Cartan gravity. In order to do so, we will ‘geometrise’
the above action, similar to how the point particle action in construction 5.11 is a
‘geometrised’ version of the free point particle action. As a first step, we observe that
the term δab ∂aΨ ∂bΨ can be translated onto a general Galilei manifold (M, τ, h) simply
as hµν ∂µΨ ∂νΨ. For the time derivative ∂tΨ however we need to introduce a time
direction – i.e. we need to replace this somehow by a term related to vµ∂µΨ, where v is
a unit timelike vector field. This would then introduce a dependence on the choice of
v, i.e. the action would not be geometric in the sense of just depending on the Galilei
manifold itself.

This apparent problem may however be solved with inspiration coming from the fact
that the free Schrödinger equation is invariant under Galilei boosts only if those are
implemented in a non-trivial manner, including a specific phase factor arising from the
Bargmann group.6 This was realised by Duval and Künzle in a paper from 1984 [DK84].
Their solution, adapted to our notation, works as follows.

5Of course, one might quantise the classical Schrödinger field, which would yield the usual ‘second
quantised’ description of an arbitrary number of non-interacting quantum particles.

6Details of this will be studied in an exercise.
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5.3. Variational description of coupling to massive matter

We consider a Bargmann structure a on our Galilei manifold (M, τ, h), and its local
representative a with respect to a chosen unit timelike vector field v. The u(1)-valued
(local) one-form i m

h̄ a on M then defines a connection on the trivial principal U(1)-
bundle M × U(1). Note that this connection depends on the choice of v – a local
Galilei boost will lead to a different local form a, and therefore to a different U(1)
connection! The Schrödinger field is now a section in the associated vector bundle
E = (M × U(1))×U(1) C with respect to the defining representation of U(1) on C. We
have a U(1)-covariant derivative operator D on E, induced by our connection, acting
on sections Ψ ∈ Γ(E) as

DµΨ =
(

∂µ + i
m
h̄

aµ

)
Ψ. (5.30)

We now use this covariant derivative operator to ‘minimally couple’ the free Schrödinger
action to Newton–Cartan gravity, leading to the action

S[Ψ] =
∫

vol
(

ih̄mvµ(Ψ DµΨ − DµΨ Ψ)− h̄2hµν DµΨ DνΨ
)

, (5.31)

where vol = τ ∧ e1 ∧ · · · ∧ en is the natural volume form of (M, τ, h). Even though it
is not obvious from the construction, this action is in fact invariant under local Galilei
boosts (exercise!). By construction, it is also invariant under R gauge transformations
of the Bargmann structure as in remark 5.10 when we let those act on M × U(1), to
which E is associated, as well, via the group homomorphism R → U(1), χ 7→ eiχ.

The Schrödinger equation we obtain from variation of this action is

ih̄vµDµΨ +
ih̄
2

1
fvol

(∂µ( fvolvµ))Ψ = − h̄2

2m
1

fvol

(
∂µ + i

m
h̄

aµ

)
( fvolhµνDνΨ), (5.32a)

where fvol is the coordinate component of the volume form, vol = fvol dx0 ∧ · · · ∧ dxn.
For a Galilei manifold with absolute time, we can further rewrite this as

ih̄vµDµΨ +
ih̄
2
(∇µvµ)Ψ = − h̄2

2m
hµνDµDνΨ, (5.32b)

where ∇ is any torsion-free Galilei connection and we have extended the action of D to
E-valued one-forms in the natural way, i.e.

Dµην =
(
∇µ + i

m
h̄

aµ

)
ην. (5.33)

Note that equation (5.32b) is indeed independent of the choice of (torsion-free) Galilei
connection: ∇µvµ is (proportional to) the expansion of v, which depends only on v and
h (see proposition 2.8); and on the right-hand side, we project onto space and thus see
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5. Bargmann structures

only the spatial part
(n)

∇ of the connection, which is the spatial Levi-Civita connection
(corollary 1.8).

In the case of a Newtonian manifold that arose from a solution of the standard
formulation of Newtonian gravity, with a = ϕτ, in adapted coordinates we have v = ∂

∂t
and hµν = δ

µ
a δν

b δab, giving the Schrödinger equation

ih̄∂tΨ = − h̄2

2m
δab∂a∂bΨ + mϕΨ (5.34)

as expected.

5.4. Bargmann structures from formal expansions of general
relativity

In this section, we will explain how Bargmann structures may be included into the
formal limiting process from Lorentzian geometry and GR to the geometry of Galilei
manifolds and Newton–Cartan gravity, as presented in section 2.3.

Theorem 5.13. Let (M, g) be a Lorentzian manifold, and let (EA) = (E0, Ea) be a local
orthonormal frame with dual frame (EA), such that the metric and inverse metric can be written
as

g = ηABEA ⊗ EB, g−1 = ηABEA ⊗ EB, (5.35)

where ηAB denotes the components of the Minkowski metric in Lorentzian coordinates, i.e.
(ηAB) = diag(−1, 1, . . . , 1). Assume that the frame and dual frame may be expanded as formal
power series in c−1 as

E0 = cτ + c−1a + O(c−3), Ea = ea + O(c−2), (5.36a)

E0 = c−1v + O(c−3), Ea = ea + O(c−2) (5.36b)

for some nowhere vanishing one-form τ ∈ Ω1(M).

(i) The expansions of the metric g and inverse metric g−1 satisfy the assumptions of lemma
2.33, such that we obtain a Galilei manifold (M, τ, h) as a formal c → ∞ limit of our
Lorentzian manifold.

(ii) (v, ea) is a local Galilei frame for the limiting Galilei manifold (M, τ, h), with dual frame
(τ, ea).
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5.4. Bargmann structures from formal expansions of general relativity

(iii) We consider a local Lorentz boost (ΛA
B) parametrised by the Rn-valued boost velocity

function k as

Λ = exp(ζaKa) (5.37a)

with the rapidity

ζa = artanh(|k|/c)
ka

|k| (5.37b)

and the boost generators

(Ka)
A

B = δA
0 ηaB − δA

a η0B. (5.37c)

Explicitly, this means that

Λ0
0 = 1 + c−2 |k|2

2
+ O(c−4), (5.37d)

Λa
0 = c−1ka + O(c−3) = δabΛ0

b , (5.37e)

Λa
b = δa

b + c−2 kakb

2
+ O(c−4). (5.37f)

Transforming the Lorentzian frame (EA) by Λ according to

(EA) → (ẼA) =
(

EB(Λ−1)B
A

)
, (5.38)

and expanding the new frame analogously to (5.36), we obtain a local Galilei boost of the
Galilei frame (v, ea) with boost velocity parameter k.

Furthermore, the local one-forms a that arise as the c−1 component of the timelike dual
frame one-form E0 transform as the local representatives of a Bargmann structure on
(M, τ, h) would, thereby in fact defining a Bargmann structure a.

(iv) Let L
ω be a Lorentzian metric connection with a regular formal c → ∞ limit (i.e. its

coordinate components with respect to c-independent coordinates, or equivalently its local
connection form with respect to the frame (v, ea), have regular limits). Then its local
connection form with respect to (EA) expands as

L
ω0

0 = 0, (5.39a)
L

ωa
0 = c−1ϖa + O(c−3) = δab L

ω0
b , (5.39b)

L
ωa

b = ωa
b + O(c−2), (5.39c)
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5. Bargmann structures

for local one-forms ωa
b , ϖa. Under local rotations and boosts of the frame, the (ωa

b , ϖa)

transform as the local connection form of a Galilei connection on (M, τ, h) would, thereby

defining a Galilei connection ω. The torsion
L
T of L

ω then expands as

L
T0 = cdτ + c−1 f + O(c−3), (5.40a)
L
Ta = Ta + O(c−2) (5.40b)

in terms of the extended torsion of ω with respect to the Bargmann structure a obtained
from the expansion of the frame in part (iii).7

Proof. (i) From the duality conditions

1 = E0(E0) = τ(v) + O(c−2), (5.41a)

0 = E0(Ea) = cτ(ea) + O(c−1), (5.41b)

0 = Ea(E0) = c−1ea(v) + O(c−3), (5.41c)

δa
b = Ea(Eb) = ea(eb) + O(c−2), (5.41d)

we obtain that (v, ea) and (τ, ea) are a local frame of vector fields and the corres-
ponding dual frame of one-forms, respectively. Inserting the frame expansions
into the metric and inverse metric expressed in terms of the frames, we further
obtain

g = ηABEA ⊗ EB = −E0 ⊗ E0 + δabEa ⊗ Eb

= −c2τ ⊗ τ − τ ⊗ a − a ⊗ τ + δabea ⊗ eb + O(c−2), (5.42a)

g−1 = ηABEA ⊗ EB = −E0 ⊗ E0 + δabEa ⊗ Eb

= δabea ⊗ eb + O(c−2). (5.42b)

Thus, we see that the assumptions of lemma 2.33 are satisfied with the given τ

and h = δabea ⊗ eb.

(ii) The above equation for h in terms of the frame (v, ea) and the fact that τ(v) = 1
show that this frame is a Galilei frame.

(iii) Transforming the frame and dual frame by a local boost Λ parametrised as in

7Note that in particular we recover one direction of theorem 2.35 (ii): if the Levi-Civita connection, with
L
T = 0, has a regular limit, then dτ = 0.
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5.4. Bargmann structures from formal expansions of general relativity

(5.37), we obtain

cτ̃ + c−1 ã + O(c−3) = Ẽ0 = Λ0
AEA

= Λ0
0E0 + Λ0

aEa

=

(
1 + c−2 |k|2

2
+ O(c−4)

)
(cτ + c−1a + O(c−3))

+ (c−1ka + O(c−3))(ea + O(c−2))

= cτ + c−1
(

a +
|k|2
2

τ + kaea
)
+ O(c−3), (5.43a)

ẽa + O(c−2) = Ẽa = Λa
BEB

= Λa
0E0 + Λa

bEb

= (c−1ka + O(c−3))(cτ + c−1a + O(c−3))

+

(
δa

b + c−2 kakb

2
+ O(c−4)

)
(eb + O(c−2))

= kaτ + ea + O(c−2), (5.43b)

c−1ṽ + O(c−3) = Ẽ0 = (Λ−1)A
0EA

= (Λ−1)0
0E0 + (Λ−1)a

0Ea

=

(
1 + c−2 |k|2

2
+ O(c−4)

)
(c−1v + O(c−3))

+ (−c−1ka + O(c−3))(ea + O(c−2))

= c−1(v − kaea) + O(c−3), (5.43c)

ẽa + O(c−2) = Ẽa = (Λ−1)B
aEB

= (Λ−1)0
aE0 + (Λ−1)b

aEb

= (−c−1ka + O(c−3))(c−1v + O(c−3))

+

(
δb

a + c−2 kbka

2
+ O(c−4)

)
(eb + O(c−2))

= ea + O(c−2). (5.43d)

From this, we may read off the transformation behaviour

(v, ea) → (v − kaea, ea) = (v, ea) · (1, k)−1, (5.44a)

(τ, ea) → (τ, ea + kaτ), (5.44b)

a → a + kaea +
1
2
|k|2τ, (5.44c)
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5. Bargmann structures

which is the correct transformation behaviour for local Galilei frames, their dual
frames, and the local representatives of Bargmann structures under local Galilei
boosts, according to propositions 3.16 and 5.6 (i).

(iv) The local connection form (
L

ωA
B) of L

ω with respect to the local orthonormal frame
(EA) takes values in the Lorentz algebra, i.e. we have

L
ω0

0 = 0, L
ωa

0 = δab L
ω0

b , (
L

ωa
b) ∈ so(n). (5.45)

According to the general behaviour of local connection forms under frame changes,

(
L

ωA
B) can be expressed in terms of the local connection form (

L̂
ωA

B) of L
ω with

respect to the frame (v, ea) as

L
ωA

B = (X−1)A
C

L̂
ωC

D XD
B + (X−1)A

C dXC
B (5.46a)

with

EA = XB
AeB . (5.46b)

From the frame and dual frame expansions, we obtain the frame change matrix
and its inverse as

Xt
0 = τ(E0) = c−1 + O(c−3), Xa

0 = ea(E0) = O(c−3), (5.47a)

Xt
a = τ(Ea) = O(c−2), Xa

b = ea(Eb) = δa
b + O(c−2), (5.47b)

(X−1)0
t = E0(v) = c + O(c−1), (X−1)a

t = Ea(v) = O(c−2), (5.47c)

(X−1)0
a = E0(ea) = O(c−1), (X−1)a

b = Ea(eb) = δa
b + O(c−2). (5.47d)

Together with the assumption that the L̂
ωA

B have regular formal c → ∞ limits,
which means that they are of the order c0, we thus obtain

L
ωa

0 = (X−1)a
C

L̂
ωC

D XD
0︸ ︷︷ ︸

=c−1 L̂
ωa

t+O(c−3)

+ (X−1)a
C dXC

0︸ ︷︷ ︸
=O(c−3)

= c−1 L̂
ωa

t + O(c−3), (5.48a)

L
ωa

b = (X−1)a
C

L̂
ωC

D XD
b︸ ︷︷ ︸

=
L̂
ωa

b+O(c−2)

+ (X−1)a
C dXC

b︸ ︷︷ ︸
=O(c−2)

=
L̂

ωa
b + O(c−2), (5.48b)

which proves an expansion as in (5.39).

A direct calculation as in the proof of (iii) shows that the local forms (ωa
b , ϖa)

transform under local Galilei boosts of the frame as the local connection form
of a Galilei connection would. One easily sees that the same is true for spatial
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5.4. Bargmann structures from formal expansions of general relativity

rotations since those are c-independent and thus rotations of (Ea) directly give
rotations of (ea). Therefore, we obtain a Galilei connection ω.

Finally, from the expansions of the dual frame (5.36) and the connection form (5.39)
we obtain the torsion of L

ω using Cartan’s first structure equation (proposition
3.14 (ii)) as

L
T0 = dE0 +

L
ω0

A ∧ EA

= cdτ + c−1da + c−1ϖa ∧ ea + O(c−3)

= cdτ + c−1 f + O(c−3), (5.49a)
L
Ta = dEa +

L
ωa

B ∧ EB

= dea + ϖaτ + ωa
b ∧ eb + O(c−2)

= Ta + O(c−2). (5.49b)

Construction 5.14. We now want to analyse how the formal c → ∞ limit from Lorent-
zian manifolds to Galilei structures interacts with (active) transformations by diffeo-
morphisms. With notations as in theorem 5.13, we let φ : M → M be a diffeomorphism,
and consider its action on all the Lorentzian objects by pushforward, i.e.

g → φ∗g, EA → φ∗EA, L
ω → φ∗

L
ω, (5.50a)

where the action of φ on the connection L
ω is in the natural way, which may be either

described by pushforward of local connection forms on U ⊂ M or by pushforward of
the global connection form on the linear frame bundle F(M) by the natural lift of φ to
F(M). By duality, it is clear that the dual frame transforms as

EA → φ∗EA. (5.50b)

Now directly inserting the formal expansions in powers of c−1, we see that the ‘limiting’
objects for our Galilei manifold also transform by pushforward, i.e. as8

τ → φ∗τ, h → φ∗h, ea → φ∗ea, (5.51a)

v → φ∗v, ea → φ∗ea, (5.51b)

a → φ∗a, ω → φ∗ω. (5.51c)

8One easily checks that if a is the local representative of a Bargmann structure on a Galilei manifold
(M, τ, h) with respect to the Galilei frame (eA), then for any diffeomorphism φ : M → N the form φ∗a
will be the local representative of a Bargmann structure on the Galilei manifold (N, φ∗τ, φ∗h) with
respect to the Galilei frame (φ∗eA), so we can really transport Bargmann structures by pushforward
by pushing forward their local representatives.
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5. Bargmann structures

Now, instead of considering transformations by proper diffeomorphisms of M, we
want to transform the fields by ‘c-dependent diffeomorphisms’. Of course, strictly
speaking this does not make mathematical sense, since coordinate representations
of diffeomorphisms are Rn-valued, and thus cannot be formal power series in c−1.
However, when considering a family of diffeomorphisms φε smoothly depending on
a proper small parameter ε with φ0 = idM, its pushforward action on any natural
geometric object A may be expanded using the Lie derivative as

(φε)∗A = A − εLX A + O(ε2), (5.52)

where X is the vector field generating of the family of diffeomorphisms. Therefore, the
way to properly implement ‘pushforward by c-dependent diffeomorphisms close to the
identity’ is to consider the action

A → A − c−2LX A + O(c−4) (5.53a)

for a vector field X, which is thought of as being the leading order expansion of action
with the pushforward of the diffeomorphism exp(c−2X).9 Now applying this action to
some object A expanded as

A = c−k(A(0) + c−2A(2) + O(c−4)) , (5.53b)

we see that the leading coefficient stays invariant, and only starting at the next order
coefficient we obtain a non-trivial transformation, namely

A → c−k
(

A(0) + c−2(A(2) −LX A(0)) + O(c−4)
)

. (5.53c)

Applying this to all our Lorentzian objects, for the ‘limiting’ Galilei-manifold objects
the only non-trivial transformation we obtain is

a → a −LXτ = a − dτ(X, ·)− d(τ(X)), (5.54)

where we used Cartan’s ‘magic formula’.
In the case of absolute time, i.e. dτ = 0, this amounts to

a → a − dτ(X, ·)− d(τ(X)) = a − d(τ(X)), (5.55)

i.e. to an R gauge transformation of the Bargmann structure as in remark 5.10 with
transformation parameter χ = −τ(X). So in the case dτ = 0, we can obtain all ‘natural
symmetries’ of the framework of Galilei manifolds with Bargmann structure – diffeomorphisms,

9Considering c−1X instead would spoil the expansions assumed in theorem 5.13.
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local Galilei transformations, and R gauge transformations of the Bargmann structure – from
the action of ‘c-dependent’ diffeomorphisms and local Lorentz transformations on Lorentzian
objects.

In the case dτ ̸= 0, the transformation (5.54) of Bargmann structures arising from
‘c-dependent infinitesimal diffeomorphisms’ does not have a similar interpretation as
directly rooted in the structure of the Bargmann group as in the case dτ = 0.

83





6. Outlook

Here, we will very briefly comment on some further topics in Newton–Cartan gravity
which were not covered in the lectures or exercises.

The first topic we want to mention is the method of obtaining Newton–Cartan
gravity from so-called null reduction of higher-dimensional Lorentzian geometry, which
was first introduced in [Duv+85] and further developed in [JN95] (and many later
works). One considers Lorentzian geometry in n + 2 dimensions, with a null (i.e.
lightlike) Killing vector field ξ. Assuming that the quotient of the Lorentzian manifold
by the flow of ξ, i.e. the space of flow lines, be a manifold, this quotient is a Galilei
manifold with a Bargmann structure in a natural way. Here all natural symmetries of
the framework of Galilei manifolds with Bargmann structure – i.e. diffeomorphisms,
local Galilei transformations, and R gauge transformations of the Bargmann structure –
arise from Lorentzian symmetries, also in the case dτ ̸= 0 (differently to the formal
Newtonian limit of Lorentzian geometry, see construction 5.14). Similarly to the case of
the formal c → ∞ limit, matter coupling on the Galilei spacetime may be obtained from
matter coupling to the Lorentzian spacetime. Assuming the Einstein equations for the
Lorentzian spacetime leads to dτ = 0, and yields the Newton–Cartan field equation for
the Galilei manifold.

As a second topic, we want to comment on so-called torsional Newton–Cartan gravity
(TNC gravity), first introduced in the context of holography in [Chr+14a; Chr+14b].
Here one considers Galilei manifolds with dτ ̸= 0, i.e. with non-vanishing temporal
torsion for Galilei connections – hence the name. Such manifolds arise for example
by null reduction of general Lorentzian manifolds; they are widely considered in
applications of Galilei geometry in condensed matter theory and string theory. An
important special case is so-called ‘twistless torsional Newton–Cartan gravity’ (TTNC

gravity): here one assumes τ ∧ dτ = 0, such that according to the Frobenius theorem
hypersurfaces integrating the spacelike distribution still exist. Physically this means
that in such Galilei spacetimes, one still has an absolute notion of simultaneity, but no
absolute notion of time (if dτ ̸= 0), which may be taken as modelling ‘gravitational time
dilation’ in a (generalised) Newtonian context – see, however, the caveat on symmetries
below.
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Finally, there is a variant of TNC gravity which by goes by the name TNC type II (with
the original version being termed type I in retrospect), first developed in [HHO19a;
HHO19b; HHO20]. As we have seen above in construction 5.14, in the case dτ ̸= 0
a formal expansion in c−1 of Lorentzian geometry with its natural symmetries does
not lead to all natural symmetries of the framework of Bargmann structures on Galilei
manifolds. To understand also the new symmetry (5.54) of the local one-forms a that
arises from the formal expansion of ‘c-dependent diffeomorphisms’ as some local
‘gauge transformation’, one needs to modify the local symmetry algebra: instead of
the Bargmann algebra, one needs to consider a different, non-central extension of the
Galilei algebra, which actually can be obtained by a so-called Lie algebra expansion of
the Poincaré algebra. This geometric framework is TNC type II geometry. It allows for
the consistent description of (generalised) ‘Newtonian limits’ of Lorentzian spacetimes
with dτ ̸= 0, i.e. including ‘time dilation’, and enables the formulation of an action
principle for Newtonian gravity (including first-order post-Newtonian corrections).
One can also employ this framework to study the post-Newtonian expansion of (locally)
Poincaré-relativistic theories of gravity (i.e. GR or its modifications) in a coordinate-free,
geometric way.
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A. Semidirect products of Lie groups

Definition A.1. Let H, N be Lie groups and ρ : H → Aut(N) a Lie group homomorph-
ism1 (here Aut(N) is the group of Lie group automorphisms of N, i.e. isomorphisms
N → N). The semidirect product of H and N with respect to ρ, denoted H ⋉ρ N, is
the Lie group whose underlying manifold is the product H × N and whose group
operation is

(h, n)(h̃, ñ) = (hh̃, nρh(ñ)), (A.1)

i.e. in the group operation ‘H acts on N via ρ’.

That this operation is really associative is guaranteed by ρ being a homomorphism
and taking values in automorphisms. The neutral element of H ⋉ρ N is (eH, eN), and
inverses are given by

(h, n)−1 = (h−1, ρh−1(n−1)) (A.2)

(if you have never encountered semidirect products before, check all this as an exercise!).
If the homomorphism by which H acts on N is clear from context, we will omit it from
the notation.

Both H and N embed as subgroups into H ⋉ N via the maps

H ∋ h 7→ (h, eN) ∈ H ⋉ N, (A.3a)

N ∋ n 7→ (eH, n) ∈ H ⋉ N. (A.3b)

N is a normal subgroup of H ⋉ N, with the quotient being canonically isomorphic to
H. This means we have a short exact sequence

1 → N → H ⋉ N → H → 1. (A.4)

In general, H as a subgroup is not normal.
An analogous construction exists for Lie algebras:

1In general, if N is not connected and the group of its connected components is not finitely generated,
Aut(N) is not a Lie group. However, in fact we just need ρ to be smooth in the sense that the joint map
H × N ∋ (h, n) 7→ ρh(n) ∈ N is smooth, which makes sense in any case.
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Definition A.2. Let h, n be Lie algebras and ρ̂ : h → Der(n) a Lie algebra homomorphism
(here Der(n) is the Lie algebra of derivations on n, i.e. linear maps f : n → n satisfying
a ‘Leibniz rule’ with respect to the Lie bracket, f ([Y, Ỹ]) = [ f (Y), Ỹ] + [Y, f (Ỹ)]). The
semidirect sum of h and n with respect to ρ̂, denoted h iρ̂ n, is the Lie algebra whose
underlying vector space is the direct sum h⊕ n and whose Lie bracket is

[(X, Y), (X̃, Ỹ)] = ([X, X̃], [Y, Ỹ] + ρ̂X(Ỹ)− ρ̂X̃(Y)), (A.5)

i.e. in the Lie bracket ‘h acts on n via ρ̂’.2

That this bracket really satisfies the Jacobi identity is guaranteed by ρ̂ being a
homomorphism and taking values in derivations (if you have never encountered
semidirect sums before, check this as an exercise!). As for semidirect products of
groups, if the homomorphism is clear from context, we will omit it from the notation.

Both h and n embed as Lie subalgebras into h i n via the maps

h ∋ X 7→ (X, 0) ∈ h i n, (A.6a)

n ∋ Y 7→ (0, Y) ∈ h i n. (A.6b)

n is an ideal of h i n, with the quotient being canonically isomorphic to h. This means
we have a short exact sequence

0 → n → h i n → h → 0. (A.7)

In general, h as a subalgebra is no ideal.
Semidirect products of Lie groups and semidirect sums of Lie algebras are closely

related. To specify this, we need the following.

Construction A.3. Let H, N be Lie groups and ρ : H → Aut(N) a Lie group homo-
morphism. For each h ∈ H, we consider the differential of ρh : N → N at the neutral
element eN ∈ N, which we denote by

ρ̇h := D(ρh)|eN
: TeN N → TeN N. (A.8)

Since ρN is a Lie group automorphism, this differential is a Lie algebra automorphism
ρ̇h ∈ Aut(n). By the chain rule, the fact that ρ is a Lie group homomorphism translates
into

ρ̇ : H → Aut(n), h 7→ ρ̇h = D(ρh)|eN
(A.9)

2Note that the notation with i is non-standard. Most literature simply uses the direct sum symbol, but
we want to take account of the non-trivial Lie bracket structure in the notation, and have it reflect the
‘direction’ of the action (‘from left to right’), similar to the standard ⋉ notation for semidirect products.
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being a Lie group homomorphism.
Now of this homomorphism, we again take the differential at the neutral element

eH ∈ H, which is a Lie algebra homomorphism

ρ̇′ := Dρ̇|eH
: h → Lie(Aut(n)). (A.10)

But the Lie algebra of Aut(n) consists of derivations on n (if you want, check this as an
exercise), so we have seen how a Lie group homomorphism ρ : H → Aut(N) induces a
Lie algebra homomorphism

ρ̇′ : h → Der(n). (A.11)

Proposition A.4. Let H, N be Lie groups and ρ : H → Aut(N) a Lie group homomorphism.

(i) The Lie algebra of the semidirect product H ⋉ρ N is the semidirect sum h iρ̇′ n, where
ρ̇′ : h → Der(n) is the Lie algebra homomorphism induced by ρ (according to construction
A.3).

(ii) The adjoint representation of H ⋉ρ N is given by

Ad(h,n)(X, Y) = (Adh(X), Adn(ρ̇h(Y)) + σn(Adh(X))) (A.12)

for (h, n) ∈ H ⋉ρ N and (X, Y) ∈ hiρ̇′ n, where ρ̇ : H → Aut(n) is the homomorphism
induced by ρ, and σn : h → n is the differential of the map H → N, h 7→ nρh(n−1) at
the neutral element eH.

Proof. As a vector space, we know that the Lie algebra of the semidirect product is
Lie(H ⋉ρ N) = T(eH ,eN)(H ⋉ρ N) = TeH H ⊕ TeN N = h⊕ n. First, we will compute the
adjoint representation. The conjugation map by (h, n) ∈ (H ⋉ρ N) is given by

α(h,n)(h̃, ñ) = (h, n) · (h̃, ñ) · (h, n)−1

= (hh̃, nρh(ñ)) · (h−1, ρh−1(n−1))

=
(

hh̃h−1, nρh(ñ)ρhh̃(ρh−1(n−1))
)

=
(

αh(h̃), nρh(ñ)ραh(h̃)
(n−1)

)
. (A.13)

Now, in order to compute the adjoint representation

Ad(h,n) := D(α(h,n))
∣∣∣
(eH ,eN)

: h⊕ n → h⊕ n, (A.14)
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consider (X, Y) ∈ h⊕ n and let h̃(t), ñ(t) be curves in H and N respectively such that
˙̃h(0) = X, ˙̃n(0) = Y. We then may compute

Ad(h,n)(X, Y) =
d
dt

α(h,n)(h̃(t), ñ(t))
∣∣∣∣
t=0

=
d
dt

α(h,n)(h̃(t), eN)

∣∣∣∣
t=0

+
d
dt

α(h,n)(eH, ñ(t))
∣∣∣∣
t=0

=
d
dt

(
αh(h̃(t)), nραh(h̃(t))

(n−1)
)∣∣∣∣

t=0
+

d
dt

(
eH, nρh(ñ(t))n−1

)∣∣∣∣
t=0

=
d
dt

(
αh(h̃(t)), βn(αh(h̃(t)))

)∣∣∣∣
t=0

+
d
dt

(eH, αn(ρh(ñ(t))))
∣∣∣∣
t=0

, (A.15)

where we introduced the notation βn(ĥ) := nρĥ(n
−1). Denoting the differential of this

map by σn := Dβn|eH
: h → n as in the statement of the proposition, we obtain

Ad(h,n)(X, Y) =
(

Adh(
˙̃h(0)), σn(Adh(

˙̃h(0)))
)
+ (0, Adn(ρ̇h( ˙̃n(0))))

= (Adh(X), Adn(ρ̇h(Y)) + σn(Adh(X))) . (A.16)

To prove that the Lie algebra is the semidirect sum, we may now use this result: we
use the fact that [(X, Y), (X̃, Ỹ)] = ad(X,Y)(X̃, Ỹ), where the adjoint representation of
the Lie algebra may be obtained from that of the Lie group by differentiating,

ad = D(Ad)|(eH ,eN)
. (A.17)

Details are left as an exercise.3

3In order to avoid the necessity of computing d
dt σn(t)(X̃) in this calculation, which may

become quite cumbersome, it is easiest to compute only Lie brackets of the form
[(X, 0), (X̃, 0)], [(0, Y), (0, Ỹ)], [(X, 0), (0, Y)] by differentiating Ad, and use those to express a general
bracket.

Of course, one can also compute the Lie bracket of a semidirect product group via the consideration
of left invariant vector fields, but the way via the adjoint representation is somewhat easier.
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