ELGTRONIT TECHNICIAN/DEALER

WORLD'S LARGEST TV-RADIO SERVICE \& SALES CIRCULATION

Testing Bipolar Transistors In \& Out Of Circuit / Annual Subject Reference Index

PTS ELECTBOMCS

Precision Tuner Service
 now available near you

ALABAMA: 524 32NO STREET SOUTH BIRMINGHAM, A1A. 35222 IEL. 205, $323-2657$ 1.20, 323-205	CALIFORNIA-NORTH: 4611 AUBURN BLVO. SACRAMENTO, CALIF. 9584] TEL. 916, 482-6220	CALIFORNIA-SOUTH: 5111 UNIVERSITY AVE SAN OIEGO, CALIF 92105 TEL. 714, 280.7070	colorado: 4958 ALLISON ST ARVAOA, COLO. 80001 TEL. $303,423.7080$	FLORIDA-NORTH: 1918 BLANOING BLVD JEL TEL. 904, 389-9952	FLORIOA-SOUTH: 12934 N.W. 7h AVE MIAMI, FLA. 33168 IEL. 305, 685.9811		kansas: 3116 MERRIAM INE KANSAS CITY, KANSAS 66100 TEL. 913, 831-1222
TEXAS - EAST: 4324.26 TELEPHDNE RO. HOUSTON, TEX. 77032 TEL. 713, 644.6793	. new	products.	pp . . . new				LOUISIANA: 2914 WYTCHWOOD OR METAIRIE, LOUISIANA 70033 TEL, 504, 885.2349
TEXAS-NORTH MOPAC LANE LONGVIEW, TEX. 75601 TEL. 214, 753-4334	of top tune . . . blow-ups tuners for	information. of all types of asy parts ident	stop . . . vhf and uhf fication		1190		maryiano: 1105 SPRING ST SILVER SPRING, MO. 20910 TEL. 301, 565-0025
JENNESSEE: 3614 LAMAR AVE MEMPHIS, TN. 38118 TEL, 901, 365.1918	. . stop guide	antenna coil stop . . . mult	placement replacement				MASSACHUSETTS: 191 CHESINUT SI SPRINGFIELO, MASS. 01103 IEL. 413, 7342737
PENNSYLVANIA-WEST: 257 RIVERVIEN AVE. W PEL, 412, $76 \mathrm{l}-7648$		redeema order	with min. stop . . .				michigan: 13709 WEST 8 MILE RD OETROIT, MI. 48235 TEL 313, 862-1783
PENNSYLVANIA-EAST: 1921 S. 70th ST. PHILLDELL PHIA, PA. 19142 TEL. 215, 724.0999							minnesota: 815 WEST LAKE ST MINNEAPOLIS, MINN. 55408 TEL. 612, 824.2333
OREGON: 5220 N.E. SANOY BLVO PORTLANO, OREGON 97213 TEL. 503, 282-9636	OKLAHOMA: 3007 N. MAY OKLAHOMA CITY, OKLA. 73106 TEL. 405, 947-2013	OHIO- SOUTH: US TUNER SERVICE 8180 VINE TEL. 513. 821 -2298	OHIO-NORTH: 5682 STATE RO CLEVELAND, OHID 44134 TEL. 216, 845-4480	north Carolina: 724 SIEGEE AVE: IEL 704. N.C. 28205 IEL. 704, 3328007	Y. CITY-NEW IERSEY: 58 MARKET ST. PATERSON. N. 07407 EE. $201,791-6380$	NEW YORK: 993 SYCAMORE ST TEL. 716 , 891 i-9335	missount 8456 PAGE BIVO SI. LOUIS, MO. 63130 TEL. 314, 428.1299

.THIS IS THE SERVICE WE OFFER:

1. Fastest Service-8 hour-in and out the same day. Overnight transit to one of our strategically located plants.
2. Best Quality-Your customers are satisfied and you are not bothered with returning tuners for rework.
3. PTS uses only ORIGINAL PARTS! No homemade or make-do, inferior merchandise (this is why we charge for major parts!). You get your tuner back in ORIGINAL EQUIPMENT condition.
4. PTS is recommended by more TV Manufacturers than any other tuner company.
5. PTS is overhauling more tuners than all other tuner services combined.

VHF, UHF
 $\$ 10.95$

Now, 23v black matrix in an economy line.

 From Sylvania, of course.Replacing a black-matrix tube has usually meant buying a brand new tube because rebuilts just didn't exist. Now, Sylvania has changed all that.

We've added five black-matrix tube types to our low-cost Color Screen 85 line, and that even includes the popular 23-inch diagonal size

That means you can offer your customers two different price ranges. And increase sales opportunities by offering a ow-price replacement.

With Sylvania, you not only have one of the broadest lines of replacement tubes in the industry.

You also have the latest
Electronic Components Group, GTE Sylvania, 100 First Ave. Waltham, Mass. 02154

GIF SYLVANIA

Oscilloscopes for most production, inspection, QC and lab applications are not used to their full capability.
In fact their full capability in bandwidth may even need to be limited by an external bandpass filter for easier trace readability. In one electronics manufacturing facility a survey of 22 applications discovered 19 applications which were appropriately served by our least expensive $\$ 179.95$ oscilloscope with recurrent sweep and 2 MHz bandwidth. A survey of your facility may reveal similar opportunities for saving. Our triggered sweep scopes with 10 MHz bandwidth and 35 nanosecond rise time answer the needs of more than 80% of all applications. Sensitivity of $10 \mathrm{mV} / \mathrm{cm}$ offered by both our single and dual trace triggered sweep scopes is similarly suitable for over 80% of all applications.

Why overspecify your oscilloscopes? It's not necessary if the intent is to be sure you get the repeatability, reliability, ruggedness and versatility that is characteristic of every B\&K oscilloscope. Move your ultra-wide bandwidth scopes to other applications where you need them. You'll find the B\&K scopes easier to use with their simplified, human-engineered panels and controls.

10 Day Free Trial

With more than 20 years successful experience in manufacturing fine test equipment at competitive prices, Dynascan has the confidence in its new B\&K instruments to offer them on a 10 day free trial basis. Just properly identify yourself, your company and your application and we'll supply a new oscilloscope that will prove our claim to quality and value. Write on your letterhead for complete specifications and Free Trial.

B\&K Model 1470 Dual Trace Triggered Sweep Scope DC to 10 MHz at $10 \mathrm{mV} / \mathrm{cm}$. Two separate vertical amplifiers. 35 n sec rise time. Six dual pattern modes including chopped, alternate, add and Channel 2 inverted. Auto and triggered sweep $1 \mathrm{usec} / \mathrm{cm}$ to $0.1 \mathrm{sec} / \mathrm{cm}$. 5 X magnification.
$\$ 580.00$

B\&K Model 1460 Triggered Sweep Scope

DC to 10 MHz at $10 \mathrm{mV} / \mathrm{cm} .35 \mathrm{n} \mathrm{sec}$ rise time. $0.5 \mathrm{usec} / \mathrm{cm}$ to $0.5 \mathrm{sec} / \mathrm{cm}$ auto and triggered sweep. 5X magnification. 5 V p-p 1 KHz calibration voltage. $\$ 450.00$
B\&K Model 1431 3" Triggered 'Mini-Scope"' As above, but $1 / 3$ the size.
\$399.00

B\&K Model 1403 Portable 3" "Mini-Scope"
$3^{\prime \prime}$ solid state scope only $51 / 4^{\prime \prime} \times 7^{3 / 8^{\prime \prime}} \times 111 / 4^{\prime \prime}$. DC to 2 MHz bandwidth and $20 \mathrm{mV} / \mathrm{cm}$ sensitivity. Recurrent sweep 10 Hz to 100 kHz . Weighs only $81 / 2$ pounds.

Semplete Line of Analog and Digital Multimeters, Oscilloscopes, Signal Generators, (esters, Power Supplies, Probes, Tubo Testers and Substitution Boxes. for more details circle 102 on Reader Service Card

ELECTRONIC TECHNICIAN/DEALER

JANUARY 1975 • VOLUME 97 NUMBER 1

J. W. PHIPPS

Editor
1 East First Street
Duluth, Minn. 55802
(218) 727-8511

ALFRED A. MENEGUS
Publisher
757 Third Avenue
New York, N.Y. 10017
(212) 754-4382

TOM GRENEY
Publishing Director
JOSEPH ZAUHAR
Managing Editor

S. J. SMITH

Production Manager
JOHN PASZAK
Graphic Design
LILLIE PEARSON
Circulation Fulfillment
GENE BAILEY
Manager, Reader Services

CONTRIBUTING EDITORS

JOSEPH J. CARR
BERNARD B. DAIEN

MANAGERS

DAVE HAGELIN

43 East Ohio Street
Chicago, III. 60611
(312) 467-0670
chuck cummings
Ad Space South/West 613 North O'Connor Irving, Texas 75060
(214) 253-8678

KEN JORDAN

DONALD D. HOUSTON
1901 West 8th Street
Los Angeles, Calif. 90057
(213) 483-8530

CHARLES S. HARRISON CY JOBSON
57 Post Street
San Francisco, Calif. 94104
(415) 392-6794

ROBERT UPTON

Tokyo, Japan
C.P.O., Box 1717

Cover photo courtesy of GTE Sylvania

FEATURES

12 TESTING BIPOLAR TRANSISTORS IN AND OUT OF CIRCUIT

Practical out-of-circuit resistance and in-circuit voltage tests of silicon and germanium bipolars. By Bernard B. Daien, ET/D Contributing Editor.

22 PROFITABLE AND COMPETITIVE PRICING OF HOME SERVICE CALLS

A proven procedure for computing the flat rate you should charge for home calls. By J. W. Phipps, ET/D Editor.

26 NEW IN COLOR TV FOR 1975-Part 5

New and significantly changed features and circuits in RCA's 1975 line of color TV receivers. By Joseph Zauhar, ET/D Managing Editor.

30 DIGITAL FREQUENCY COUNTERS FOR SERVICING-Part 1

First of a two-part series which examines the theory of operation, specifications and servicing applications of digital-readout frequency counters. By Joseph J. Carr, ET/D Contributing Editor.

35 TECH BOOK DIGEST-Troubleshooting Horizontal Deflection \& High-Voltage Circuits-Part 1

A two-part series which analyzes the operation of horizontal deflection and highvoltage circuits and explains how to isolate faults in them. By Ben Gaddis, TAB BOOKS, Copyright 1974.

38 ET/D 1974 SUBJECT REFERENCE INDEX

Alphabetical listing of subjects and article titles by issue and page.

TEKFAX—Airline Models GAI-12925A, GAI-11245A, B and GAI-11265A, B; General Electric Ch. XA; Quasar Ch. ATS-, CTS- and TS-942; and Sylvania Ch. E11-1.

DEPARTMENTS

4 EDITOR'S MEMO
6 NEWS OF THE INDUSTRY
9 ELECTRONIC ASSOCIATION DIGEST
10 TECHNICAL LITERATURE
42 TEST INSTRUMENT REPORT

43 TECH DIGEST
44 NEW PRODUCTS
48 DEALER SHOWCASE
50 ADVERTISERS' INDEX
51 READER SERVICE

A HARCOURT BRACE JOVANOVICH PUBLICATION ABP

[^0]

NOW! Protect against Transient Voltage Damage to TV, Stereo and Home Appliances with $\mathrm{GJ} \mathrm{SH}^{-1} \mathrm{DO}$ Metal Oxide Varistors.

TV Set manufacturers know that many component failures are caused by voltage transients: lightning, voltage spikes and power surges. Now you can do something about it . . . economically.
Insert easy to install GE-MOV metal oxide varistors in component circuits and prevent damage from transient voltage once and for all. The varistor absorbs the dangerous transient and dissipates it as heat. The cost is low. The installation fast and easy. It's like offering your customers an insurance package...and it's an opportunity to make a profit!
Our GE-MOV program is ready and waiting. For all the facts about this addition to General Electric's growing replacement semiconductor line, see your authorized distributor

TUBE PRODUCTS DEPARTMENT GENERAL ELECTRIC COMPANY OWENSBORO, KENTUCKY 42301

EDITOR'S MEMD

CONTRIBUTING EDITORS

- Beginning with this issue, two additional names-Joseph J. Carr, CET, and Bernard B. Daien, CETappear on the masthead of ET/D.
Articles by these two knowledgeable and experienced technicians have been published in recent issues of ET/D and, because they were so well received by ET/D readers, we asked Mr. Carr and Mr. Daien to become contributing editors for ET/D. As such, they will author one article in each issue and will function in an editorial advisory capacity as well as serving as additional "eyes and ears" in their respective areas of the country for the Duluthbased editorial staff.
Joe Carr has 15 years experience as an electronic technician and, while attending college, was an active partner in an auto radio servicing business. He has authored many books and articles about electronics and electronic servicing and is a Certified Electronic Technician (CET). Mr. Carr presently is a technician in the bioelectronics laboratory of George Washington University Medical Center in Washington, D.C.

Bernard Daien has over thirty years' experience as an electronic technician, engineer, teacher and author. He is a Certified Electronic Technician and holds commercial and amateur radio licenses. Mr. Daien previously was a senior systems engineer for Motorola Semiconductor Products Division in Tempe, Arizona, and now writes about and services electronic products in Phoenix, Arizona.

A SPECIAL "THANK YOU" TO ET/D READERS

On behalf of the entire ET/D staff, I want to thank the many readers who responded to the Reader Preference Survey in the November issue. Your cooperation in making ET/D even more responsive to your needs and interests is appreciated. Again, thank you.
J. W. Phipps

Type EV -

 the space-saver 'lytic \downarrow の
board room

For space-saving 'lytic capacitor replacements on crowded printed wiring boards found in most of today's foreign and domestic consumer entertainment products, Sprague Type EV Verti-Lytic ${ }^{\circledR}$ Capacitors have the widest range of values \qquad in the smallest case sizes of any. single-ended capacitors available anywhere!

Get on Board with the KE-17 Assortment

This handy assortment of 61 Type EV Capacitors in the 27 mostpopular ratings gives you an on-the-spot inventory of the replacement capacitors you need for most of the sets you'll encounter. Sturdy blue plastic cabinet has nine pre-labeled drawers for fast, easy selection. And you pay for capacitors only . . . the cabinet is yours at no extra cost!

See these "new era" capacitors at your Sprague distributor's. Or, get the full story by writing for Brochure M-951 to: Sprague Products Co., 65 Marshall Street, North Adams, Mass. 01247.

SPRAGUE

the mark of reliability

Audio Product Sales Up in October But Overall Sales of Entertainment Electronic Products Sagged During First 10 Months of 1974

Although total sales to dealers of all audio categories of entertainment electronic products were up in October, sales of all entertainment electronic products except home FM radios during the first ten months of 1974 were below levels achieved during the same period in 1973, as revealed by the following statistics released by the Marketing Services Department of the Electronic Industries Association:

\left.| | FIRST | 10 | MONTHS |
| :--- | ---: | :---: | :---: |$\right) \%$ CHANGE

Sylvania Warranty Department at New Address

The Labor Warranty Department of GTE Sylvania has been moved to 700 Ellicott St., Batavia, N.Y. 14020. All warranty labor claims and questions about warranty labor should be sent to this new address.

New York Fair Trade Law Upheld

The New York Supreme Court, in a fair trade case involving Matsushita Electric Corporation of America (Panasonic) and three stores of the JGE retail chain, has ruled that the Fair Trade Laws of New York State are not unconstitutional.
The Court has issued injunctions against the three JGE stores, restraining them from price cutting activities which the Court felt were jeopardizing the effectiveness of Matsushita's Fair Trade program in New York state.

1975 Consumer Electronics Show in Chicago June 1-4

The ninth annual Summer Consumer Electronics Show, sponsored and produced by the Consumer Electronics Group of the Electronic Industries Association, will be held June 1-4 at McCormick Place in Chicago.

Over 400 manufacturers and marketers of consumer electronic products will exhibit their new 1976 lines at the trade show, which is open to retailers, distributors, sales representatives and manufacturers. Retail-oriented audio, video and calculator conferences will be held during the show.

OSHA Recordkeeping Forms Revised

Beginning this month, employers who have eight or more employees are required to record occupationally related injuries and illnesses on a revised form which categorizes lost work days into two types: "days away from work" and "days of restricted work activity."
"Days away from work" are defined by the U.S. Department of Labor as any days on which an employee would have worked but could not because of occupational injury or illness.
"Days of restricted work activity" are defined by the Labor Department as days during which an employee was assigned to another job on a temporary basis, or worked at his regular job less than full time, or worked at his regular job but could not perform all duties normally connected with it because of occupational injury or illness.

How to crack the Japanese original equipment transistor problem.

Until now, there wasn't much you could do about the long delays in getting original transistor replacements for Japanese TV and audio equipment. IR has changed the picture. Now you can speed customer service with iR's DK22 Kit of 31 OEM transistors most often called out by Sony, Panasonic, Hitachi, JVC, Pioneer and Toshiba, and for many sets made in Japan for Sears, Penney's, Montgomery Ward and others.

These are not "Universal Replacements."

They are exactly the same parts used in original equipment. They're made in Japan, but are now as close to you as your local IR Distributor. Each DK22 Kit contains one each of the 31 types listed in the box at right to put exact replacements right at your fingertips

INTERNATIONAL RECTIFIER
ISR
Semicombuctor Division,
233 Kansas Street. El Segundo, Califorma 90245, Phone (213) 678.6281

Now make almost all your replacements with RCA's medium-priced Colorama A's

That's the kind of socket coverage you can count on from this popular new "middle line" of RCA replacement color picture tubes. With just eight Colorama A types, you can cover almost all of the replacement market with "Grade A" performance at a price your customers can afford.

Every tube in the RCA Colorama A line is totally remanufactured. That's why they all can carry RCA's 18 -month inboarded warranty plus the option for an additional 12 months. Each has a completely new gun and a completely new screen made of the latest all-new rare-earth phosphors. In addition, every " V " type is made of advanced x-ray glass.

The RCA Colorama A line includes three Matrix types: CA-21VAKP22, CA-23VALP22 and CA-25VABP22. These advanced RCA Matrix tubes are as much as 100 percent brighter than any equivalent non-Matrix picture tube in RCA history.

So why not give your customers the "Grade A" choice. Choose Colorama A at your RCA Distributor today.

Remember, RCA is the world-wide leader in picture tubes, with over 65 million produced to date.

RCA/Electronic Components/Harrison, N.J. 07029

ELECTRONIC ASSOCIATION DIGEST

Information about the activities of national, state and local associations of electronic servicers, dealers and manufacturers Material for publication in this department should be addressed to: Service Association Digest, ET/D, 1 East First St., Duluth, Minn. 55802

ETG of Rhode Island Elects New Officers

The Electronic Technicians Guild of Rhode Island, meeting in Pawtucket on Nov. 6, elected the following new officers, whose terms of office begin this month: Paul F, Kelley, Warwick, president; Donn C. DiBiasio, Providence, vice president; William Botelho, Warwick, secretary; Norman L. Lemieux, Attleboro, Mass., treasurer; and Thomas J. Plant, Jr., Pawtucket, corresponding secretary.

PennsyIvania ISCET Chapter Receives Charter, Elects Officers

The Pennsylvania Chapter of the International Society of Certified Electronics Technicians (ISCET) recently received its charter at a luncheon meeting in the Hilton Inn in Scranton.

Russell Scarpelli, owner of Scarpelli Electronics Service, Blakely, chairman of the new chapter, was presented the charter by John Risse of International Correspondence Schools, who represented Dick Glass, ISCET executive vice president. Other officers of the newly organized state chapter are: James Ibaugh, RCA, Lancaster, vice chairman; Ronald Lettieri, Tobyhanna Army Depot, Dunmore, secretary; and Hank Govan, Weston Instruments, Olyphant, treasurer.

FESA Chapter Sponsors Consumer "Hot line"

The Dade County Chapter of the Florida Electronics Service Association (FESA) has installed a consumer "hot line" telephone in the office of the chapter's recording secretary, John W. Dole, Dole TV \& Radio, Miami.

The "hot line," which is connected to a telephone answering machine, was installed when the chapter reportedly found that the local Better Business Bureau was taking up to two months to handle consumer complaints. The "hot line" telephone number is listed in the Yellow Pages and has been publicized by local newspapers and radio and TV stations.

ESETRA Formed to Cope with Warranty-Related Problems

Elected officials of the National Appliance and RadioElectronics Dealers Association (NARDA Inc.), the National Alliance of Television and Electronic Service Associations (NATESA), and the National Electronic Service Dealers Association (NESDA) recently met in Louisville, Kentucky to form a special "blue-ribbon" committee which will attempt to come up with solutions to warranty-related problems.

Nolan Boone, president of the Television Service Association of Arkansas, was appointed coordinating chairman of the special national committee, which has been given the name "Eastern States Electronics Technicians Regional Alliance" (ESETRA).

In addition to the chairman, the committee consists of two elected officials from each of the three national associations (NARDA, NATESA and NESDA).

Included among the warranty-related problems the committee will study are labor rates, parts availability, slow payment by manufacturers, and the additional costs of in-warranty servicing.

BEFORE YOU BUY A SWITCH... CONSIDER THISELEGTROORAFT

 GIVES YOU...More than 120 switches and accessories of all types and styles
All displayed on one fixture for easy selection

- Alsa available in bulk

$\square \square$

ELECTRONICS

GC ELECTRONICS

[^1]
TECHNICAL LITERATURE

Alarm/Security Cable

A revised 12-page expanded catalog of electronic wire and cable for alarm/security applications has been published. The catalog simplifies selection of wire and cable by installers, specifications and systems engineers, systems contractors, and maintenance personnel concerned with surveillance, detection, alarm, and communications
equipment. More than 100 individual wire, cable, and cord designs are included in the catalog. Catalogued for the first time are 42 vinyl-insulated multiple-conductor control and audio cables (not paired), seven single-conductor hook-up wire designs, and three portable cord constructions. Belden Corp., Advertising Dept., 2000 S. Batavia Ave., Geneva, IL. 60134.

Semiconductors and Accessories

A 148-page SK-Series Top of the Line Replacement Guide, No. SPG202P, is now available. The guide lists

87,000 SK-Series solid-state replacements which include transistors, rectifiers, thyristors and integrated circuits. The guide is a comprehensive and accurate source of solid-state replacement information. The 87,000 semiconductor devices are cross-referenced to the SK-Series replacement semiconductors. The Replacement Program is composed of devices for uses as replacements in entertainment and industrial type equipment. Price $\$.90$. RCA/Distributor Products Marketing, Route 202, Somerville, NJ. 08876.

Radio/TV Repair Course

A 6-page pamphlet describing its radio and TV service and repair course is now available. It briefly discusses course topics and career opportunities for individuals interested in working directly in radio and TV service and repair as well as in related fields. Advance Schools, Inc., is a national home-study school accredited by the accrediting Commission of the National Home Study Council. ASI Marketing Communications, Dept. TV, 5900 Northwest Highway, Chicago, IL. 60631 .

Professional Tools and Safety Equipment

An 80-page catalog of specialized professional hand tools and safety equipment is now available. The cata\log is organized for easy reference and fully indexed--both alphabetically and by product number. Tools and safety equipment are illustrated with large photographs and drawings. Many illustrations utilize a second or third color for added clarity of special features. Concise product descriptions, specifications, and catalog numbers make selection simple. Mathias Klein \& Sons, Inc., 7200 McCormick Road, Chicago, IL. 60645.

Solid-State Product Guide

A 40-page Solid-State Product Guide No. SPG-201K is now available. This booklet contains abbreviated data for the commercial solid-state products available from the RCA Solid State Division. Data is given for Integrated Circuits (Linear and Digital) and discrete devices (power transistors, RF transistors, MOS transistors, triacs, silicon controlled-rectifiers, diacs, and rectifiers. Complete data on individual devices can be obtained by reference to the technical bulletins listed by file number or to the RCA Solid-State DATABOOK Series (SSD2001); the publications are available from RCA Solid State Division, Box 3200, Somerville, NJ. 08876.

Our Television Systems will sell your Televisions

Color TV sells on demonstration. The better the demonstration the quicker the sale. Nothing is more embarrassing than to demonstrate a fine TV set and find the picture rolling, the color balance changing. And it can happen, just at the wrong time.

One of the ways you can make sure that it won't happen is by using BlonderTongue distribution systems. Blonder-Tongue offers a wide choice of systems for color TV, black and white, and hi-fi component demonstrations. Any number of outlets, for best performance in any area-big city, suburbs
or deep fringe.
We've got the products from antennas to TV terminals. Most important we have the know-how gained through thousands of showroom system installa-
tions over the past 24 years.
We offer you a layout of a showroom TV system tailored to your store layout and reception area. It's free. Use coupon below for a survey request form.

Blonder-Tongue Laboratories, Inc.

One Jake Brown Rd. Old Bridge, N.J. 08857
: Please send me a survey request so I can provide information required for a system layout for my store
Näme
Company
Address
\qquad State \qquad Zip \qquad

BLONDER TONGUE since 1950, teader in TV reception products.

\qquad

By Bernard B. Daien, ET/D Contributing Editor

A vacuum tube "wears out" over a period of time because the coating on its cathode becomes "depleted," reducing the number of electrons emitted from the cathode to the plate.

Transistors do not "wear out." If a transistor is normal when it is installed in a circuit, it usually will continue to perform within its design limits until some circuit defect or abnormal operating condition causes excessive voltage across or excessive current through one or more of its three junctions (emitterbase, base-collector or emitter-collector). The excessive voltage and/ or excessive current will cause cither 1) catastrophic failure of the junction (it becomes open or shorted) or 2) the transistor will develop excessive leakage or noise.

Most transistor failures are "complete" shorts or opens, either base to emitter, base to collector, or emitter to collector. (The emitter-tocollector short can exist even though the emitter-to-base and collector-tobase junctions test normal for both forward and reverse conduction. So never omit testing for shorts between collector and emitter, even if you have made the other tests.)

The incidence of leakage in most modern transistors is not as prevalent as it was in germanium devices made several years ago. Unfortunately, you may run across an older receiver which uses the early germanium transistors, or you may

Testing Bipolar Transistors In and Out of Circuit

most defective transistors
 Tips about the simple resistance and voltage measurements you probably are using to uncover

have some old stock on hand It is good practice to discard any transistors bought prior to 1965 , or, at least, put them into your "private" collection or use them for "home brew" projects. It isn't worth risking a callback for a device that can be bought today for a dollar or so.

An unusually noisy transistor should also be replaced, because there is a direct connection between noisy transistors and premature failures.

If a circuit failure subjects the transistor to a substantial overload, it is a good practice to replace the transistor, because gain, leakage, and junction voltage drops might be adversely affected.

Fig. 1-Forward voltage-forward current curve of a typical silicon bipolar transistor.

OUT-OF-CIRCUIT TESTS

Although it is recommended that the voltages across the junctions of the transistor be measured before the transistor is removed from the circuit for ohmmeter tests, in this article ohmmeter tests will be discussed first because a thorough understanding of the junction characteristics involved in ohmmeter tests make it easier to understand and interpret the causes of abnormal voltages across the transistor junctions.
First, let us look at the forward voltage drop across a basic silicon junction with various levels of current through it. Fig. 1 shows that different levels of current cause different voltage drops. At 0.01 ma we read about 0.38 volts. At 1ma, 0.62 volts. At $10 \mathrm{ma}, 0.78$ volts. At $100 \mathrm{ma}, 1.0$ volts. Note that although the current through the junction has been increased by a factor of 10,000 (from .01 ma to 100 ma) the voltage drop across the junction has increased by a factor of only less than 3. This reveals that the resistance (E / I) of the junction is nonlinear; that is, an increase of current through the junction does not produce a proportional increase in the voltage drop across it.

The junctions of germanium transistors also exhibit nonlinear resistance characteristics, as revealed by the forward voltage-forward current curve in Fig. 2.

The nonlinear resistance charac-

TUNER SERVICE CORPORAIION

FEATURES

- A UHF Tuner with 70 channels which are detented and indicated just like VHF channels.

- A VHF Hi Gain Solid State Tuner.

Demonstrate the SUBSTITMTES to your customers and show improved reception with their TV sets.

You may place your order through any of the Centers listed below.

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS.

REPAIR

VHF OR UHF ANY TYPE
(U.S.A. ONLY) \$ 9.95 UHF/VHF COMBINATION (U.S.A. ONLY) $\$ 15.00$

- IN THIS PRICE ALL PARTS ARE INCLUDED.

Tubes, transistors, diodes, and nuvistors are charged extra. This price does not include mutilated tuners.

- Fast, efficient service at our conveniently located Service Centers.
- All tuners are ultrasonically cleaned, repaired, realigned, and air tested.

REPLACE

UNIVERSAL REPLACEMENT TUNER $\$ 12.95$ (Canada \$15.95)

- This price buys you a complete new tuner built specifically by Sarkes Tarzian Inc. for this purpose.
- All shafts have a maximum length of $101 / 2^{\prime \prime}$ which can be cut to $1 \frac{1}{2}$ ".
- Specify heater type parallel and series 450 mA or 600 mA .

CUSTOMIZE

- Customized tuners are available at a cost of only $\$ 15.95$. With trade-in $\$ 13.95$. (Canada $\$ 17.95$ and $\$ 15.95$)
- Send in your original tuner for comparison purposes to Franchises listed below.

WATCH US GROW

BLOOMINGTON, INDIANA 47401
HEADQUARTER

KENTUCKY
LOUISIANA
MARYLAND
MISSOURI
NEVADA NEW JERSEY

OHIO
OREGON TENNESSEE

TEXAS VIRGINIA CANADA

TUCSON, ARIZONA 857 t3) NORTH HOLLYWOOD, CALIF. 91601 BQRLINGAME, CALIF. 94010 MODESTO, CALIF 95351 TAMPA, FLORIDA 33606 HIALEAH, FLORIDA 33013 ATLANTA, GEORGIA 30310 CHAMPAIGN, ILLINOIS OT 20 CHICAGO ILLINOIS 60621 SKOKIE, ILLINOIS 600Z6. HAMMOND INDIANA 46323 UNOIANAPOLIS, INDIANA 46204 LOUISVILLE, KENTUCKY 40208 SHREVEPORT, LOUISIANA 79104 BALTIMORE, MARYLAND 21215 ST. LOUIS, MISSOURI 63132 LAS VEGAS, NEVADA 89102 TRENTON. NEW JERSEY 08638 JERSEY CITY. NEW JERSEY 07307
6. CINCINNATI, OHIO 45216 CLEVELAND, OHIO 44109 PORTLANO, OREGON 97210 GREENEVILLE TENNESSEE 37743 MEMPHIS, TEXNESSEE 38111 DALLAS, TEXAS 75218 NORFOLK, VIRGINIA 23513 St. LAURENT, QUEBEC H4N-2L7 CALGARY, ALBERTA T2H-OL1

537 South Walnut Street P.O. Box 4534, 1528 S. 6th St 10654 Magnolia Boulevard 1324 Marsten Road 123 Phoerlix-Avenue 1505 Cypress Siret 906 East 25 th Stread -938 Gordon Street S.W. 405 East University Stre 737 West 55th Street. 5110 West Brown SI
$\ldots 6833$ Grand Avenue 112 West St. Clair sirs 2920 Taylor Boulevard 3025 Highland Avenue 5505 Reisterstown Rd - T0530 Page Avenue 1412 Western Avenue No. 901 North Olden Avenue 547-49-Tonnele Ave., Hwy. 1 \& 9 7450 Vine Street 4525 Pearl Road 1732 N.W. 25th Avenue 1215 Snapps Ferry Road 3158 Bagyon Avenue 11540 Garland Road 3295 Santos Street
305 Decarie Boulevard 448 42nd Avenue S.E. A, ,
teristic of transistor junctions and the fact that each range of an ohmmeter applies a different value of current to the junction are the reasons that the amount of resistance measured across a transistor junction depends on which ohmmeter range is used. This is illustrated in Tables 1, 2 and 3, which list the resistances of forward and reverse
biased junctions of typical germanium and silicon power transistors (The resistances were measured with a Simpson Model 260 VOM, which has 20,000 ohms/volt input resistance, a 50 microamp meter, and produces about 50 ma of current through the junction in the RX1 range, about .50 ma in the RX 100 range and 50 microamps in

TABLE 1

METER	FORWARD BIASED JUNCTION RESISTANCES			
	germanium		SILICON	
RANGE	B-E	B.C	B-E	B-C
RX1	4 ohms	4 ohms	90 hms	9 ohms
RX100	100 ohms	100 ohms	550 ohms	550 ohms
RX10K	0 ohms	0 ohms	7000 ohms	7000 ohms

TABLE 2

REVERSE BIASED JUNCTION RESISTANCES				
METER	GERM		SILICON	
RANGE	B-E	B.C	B-E	B-C
RX1	Inf.	Inf.	Inf.	Inf.
RX100	50K ohms	50K ohms	Inf.	Inf.
RX10K	150K ohms	150K ohms	1.5 meg ohms	Inf.

Fig. 2-Forward voltage-forward current curve of a typical germanium bipolar transistor.

TABLE 3

EMITTER-COLLECTOR		
JUNCTION RESLSTANCCES		
(REVERSE BIAS ON		
COLLECTOR)		
METER	GERMANIUM	SILICON
RANGE	E-C	E-C
RX1	400 ohms	Inf.
RX100	50 ohms	Inf.
RX10K	0 ohms	Inf.

Fig. 3-The leakage current indicated by the arrows is the reason that germanium power transistors inherently have low reverse-bias emitter-to-collector resistance.
the RX10,000 range.)
Note that in Table 1 the base-toemitter and base-to-collector forward resistances are the same. Also note in Table 1 that, because of the inherently higher leakage of germanium transistors, the RX1 and RX10K ranges produced completely misleading readings for the germanium junctions (RX10K range falsely indicates shorted junctions) and less than conclusive readings for the silicon junctions. On the other hand, the RX100 range provides relatively accurate readings which would clearly reveal a shorted or open junction.

Note in Table 2, which lists the reverse bias resistances for the same junctions, that the RX100 range again produces conclusive readings which would clearly disclose open or shorted conditions, while the RX1

Fig. 4-Typical emitter-related defects and associated voltage symptoms in a commonemitter circuit.
and RX10K ranges again produce inconclusive or misleading readings.

Table 3 lists the emitter-to-collector resistances of the same transistors, with the collector reverse biased just as it would be during normal in-circuit operation. Note that the inherently higher leakage of the germanium transistor produced a completely misleading reading on the RX10K range, but, again, the RX100 range produced a conclusive reading which would reveal a short or open condition, if either existed.

To understand why germanium power transistors have such low emitter-to-collector resistance when reverse biased, refer to Fig. 3. Note that any leakage across the base-tocollector junction has nowhere to go if the base is open (or if there is a very high resistance between base and emitter). The leakage therefore crosses the forward-biased emitter-to-base junction in order to complete the circuit. Any current flowing through the emitter-to-base junction is amplified by the transistor,

Fig. 5-Typical base-related defects and associated voltage symptoms in a common-emitter circuit.
and a larger current then flows between emitter and collector. Thus, when the base is open, the collector junction leakage is amplified by the current gain of the transistor and the emitter-to-collector path be-

Fig. 6-Typical collector-related defects and associated voltage symptoms in a commonemitter circuit.

Fig. 7-Internal circuitry of a Darlington transistor.
comes a low resistance.
Even modern germanium transistors have higher leakage than silicon transistors, and power transistors have higher leakages than small-signal transistors. Therefore, the leakage of a germanium power transistor can be considerable. If you stick with the RX10 or RX100 ranges (whichever your meter has) you will avoid most of the leakage problems.

Semiconductors are temperature sensitive devices. Leakage doubles for every 10 -degree C temperature rise. Therefore, transistors operating in circuit will have greater leakage than that measured "cold" out of circuit. Typically the junction temperature for germanium transistors may go as high as 70 degrees or more, representing an increase in "hot" leakage current of about 15 times over "cold" junction leakage.

To make matters worse, the emit-ter-to-base junction has a negative temperature coefficient (as the temperature increases the required forward bias decreases). Thus, for a given bias, collector current tends to increase as the temperature increases. The combination of these two effects causes significantly higher currents to flow in a leaky transistor as it heats up. If you find a transistor that appears to have more leakage than similar devices, and you are doubtful about it (remember, it's going to get worse as it heats up in the set), replace it and save yourself a callback. This applies particularly to germanium devices used in auto radios, some portable radios and in older sets. Modern silicon transistors tend not to leak. They are either normal or open or shorted, and not much else.

Another reason for using only the RX10 or RX 100 range of your VOM is that the RX1 range of many VOM's applies 100 ma or more of current to a junction under test. This level of current is sufficient to damage the base-to-emitter junction of some low-power transistors and the junction of signal diodes.

If you are not already thoroughly familiar with the junction resistance readings produced by your VOM, use it to make readings of the for-ward- and reverse-biased junction resistances of known-good germani-

An Extraordinary Offer to introduce you to the benefits of Membership in ELECTRONICS BOOK CLUB for a limited time only you can obtain
 OF
 THESE
 unique ... yours for only
 B00KS
 with Trial
 (Combined List Price \$45.85) club Membership

May we send you your choice of any three books on the facing page as part of an unusual offer of a Trial Membership in Electronics Book Club?
Here are quality hardbound volumes, each especially designed to help you increase your know-how, earning power, and enjoyment of electronics.
These handsome, hardbound books are indicative of the many other fine offerings made to Members . . important books to read and keep . . . volumes with your specialized interests in mind.

Whatever your interest in electron-ics-radio and TV servicing, audio and hi-fi, industrial electronics, communications, engineering-you will find Electronics Book Club will help you.
With the Club providing you with top quality books, you may broaden your knowledge and skills to build your income and increase your understanding of electronics, too.

How You Profit From Club Membership

This special offer is just a sample of the help and generous savings the Club offers you. For here is a Club devoted exclusively to seeking out only those titles of direct interest to you. Membership in the Club offers you several advantages.

1. Charter Bonus: Take any three of the books shown... plus the FREE Bonus book worth $\$ 7.95$ (combined values to $\$ 53.80$) for only $99 ¢$ each with your Trial Membership.
2. Guaranteed Savings: The Club guarantees to save you at least 25% to 75% on all books offered. 3. Continuing Bonus: If you continue after this trial Membership, you will earn a Dividend Certificate for every book you purchase. Three Certificates, plus payment of the nominal sum of $\$ 1.99$, will entitle you to a valuable Book Dividend which you may choose from a special list provided members. 4. Wide Selection: Members are annually offered over 50 authoritative books on all phases of electronics. 5. Bonus Books: If you continue in the Club after fulfilling your Trial Membership, you will receive a Bonus Dividend Certificate with each addi-

SPECIAL FREE BONUS

. if you act now !

Yes, if you fill in and mail the Mem. bership Application card today, you'll also get this Bonus Book, FREE! TV TROUBLESHOOTER'S HANDBOOK Revised Second Edition
A completely updated quick-reference source for solutions to hundreds of tough - dog troubles. Regular List Price $\$ 7.95$
(lor a total combined list price of $\$ 53.801$)
tional Club Selection you purchase. For the small charge of only $\$ 1.99$, plus three (3) Certificates, you may select a book of your choice from a special list of quality books periodically sent to Members.
6. Prevents You From Missing New Books: The Club's FREE monthly News gives you advance notice of important new books . . . books vital to your continued advancement.

This extraordinary offer is intended to prove to you, through your own experience, that these very real advantages can be yours \ldots that it is possible to keep up with the literature published in your areas of interest... and to save substantially while so doing.

How the Club Works

Forthcoming selections are described in the FREE monthly Club News. Thus, you are among the first to know about, and to own if you desire, significant new books. You choose only the main or alternate selection you want (or advise if you wish no book at all) by means of a handy form and return envelope enclosed with the News. As part of your Trial Membership, you need purchase as few as four books during the coming 12 months. You would probably buy at least this many anyway . . . without the substantial savings offered through Club Membership.

Limited Time Offer!

Here, then, is an interesting opportunity to enroll on a trial basis . . . to prove to yourself, in a short time, the advantages of belonging to Electronics Book Club. We urge you, if this unique offer is appealing, to act
promptly, for we've reserved only a limited number of books for new Members.
To start your Membership on these attractive terms, simply fill out and mail the postage-paid airmail card today. You will receive the three books of your choice for 10 -day inspection. SEND NO MONEY! If you are not delighted, return them within 10 days and your Trial Membership will be cancelled without cost or obligation. Electronics Book Club, Blue Ridge Summit, Pa. 17214.

Typical Savings Offered Club
 Members on Recent Selections

RCA Color TV Serv. Man's. Vols. 3 \& 4 CET Ea. List Price $\$ 8.95$; Club Price $\$ 5.95$ CET License Handbook List Price $\$ 8.95$; Club Price $\$ 5.95$ TV Bench Servicing Techniques List Price $\$ 7.95$; Club Price $\$ 4.95$ Practical Test Instruments You Can Build Elec. Wiring \& Lighting Club Price $\$ 4.95$ Elec. Wiring \& Lighting for Home/Office List Price $\$ 7.95$; Club Price $\$ 4.95$ Modern Communications Switching Sy. ist Price $\$ 17.95$; Club Price $\$ 13.95$ Computer Technician's Handbook Color TV TV Trouble Factbook Price $\$ 8.95$ Color TV Trouble Factbook-2nd Ed. Solid-State Pircuits Guidebook $\$ 8.95$ Club Price $\$ 4.95$ List Price 8 S 95 . Cluook Installing TV \& \& FM An; Club Price $\$ 5.95$ Installing TV \& FM Antennas

List Price \$7.95; Club Price $\$ 3.95$ Understanding \& Using the VOM \& EVM List Price \$7.95; Club Price $\$ 4.95$ Modern Applications of Linear IC's FM Stereo/Quad Recvr; Servicing $\$ 9.95$ List Price $\$ 7.95$; Club Price $\$ 4.95$ Electronic Music Production

List Price $\$ 7.95$; Club Price $\$ 3.95$ Auto Stereo Service \& Installation Getting Most out of Elec Calit $\$ 5.95$ List Price $\$ 7.95$. Club Price $\$ 4.95$ Mobile Radio Handbook
List Price \$7.95; Club Price $\$ 4.95$ Elec. Test Equipment/How To Use It List Price $\$ 7.95$; Club Price $\$ 4.95$ Indexed Guide To Modern Electr. Circs. List Price $\$ 7.95$; Club Price $\$ 4.95$ ectronics For Shutterbugs

List Price $\$ 8.95$; Club Price $\$ 5.95$ Introduction to Medical Electronics List Price $\$ 9.95$; Club Price $\$ 6.95$ Cassette Tape Recorders
Mary List Price \$7.95; Club Price $\$ 4.95$ MATV Systems Handbook
How to Price $\$ 7.95$; Club Price $\$ 4.95$
List Price $\$ 8.95$ Gasoline Engines

CATV System Engineering

Third Edition, Re-

CA an vic

 CATV indard of the an expandustry vised version of thefirst and first and only author-
itative book on plan-
ning ning, designing, and
operating a catv
plant. Cover composed of systems related components plants. Subjects covered include discepts, high level distribution principles of cable powering, ampliffer and system dynamic range, cascaded figure of merit, system operating
levels, jumper cables, equalization and alignment, and a host of other vital suhjects, including how to modernize older systems uging the newest equipment available. 256 pps
List Price \$12.95 - Order No. 298

Kwik-Fix TM TV Service Manual

 to speed color-Ty it's "Turn it on, that 1 Each $\begin{array}{cc}\text { ription. } & \begin{array}{c}\text { circuit } \\ \text { typical } \\ \text { dignal }\end{array} \\ \text { dematics. } \\ \text { signal }\end{array}$ charts, and waveforms condensed into easy-to-use, step-by-step trou-
bleshooting charts that will help solve almost any TV trouble in doublequick time. With typical pho-
tos and scope traces. this manual tos and scope traces, this manual tom to repair. Normal and abnormal waveforms, taken from representative TV receivers, pinpoint problems that might otherwise keep
you guessing. 384 pps., hundreds List Price $\$ 8.95$ Order No. 611

Dictionary of Electronics

 You'll find this huge useful in extremely connection you have
with electronics. This with electronics. This dictionary of elec-
tronics defines most
all of the electronic terms you will run across in y
alpha particles
through zoom lens
terms you need and use most often, nommung cations, radar, electronic instrumentation, broadcasting, industrial electronics, etc. It provides full. complete and easiy-understandable electronics terms (such as transistors, acoustic feedback, alpha particles, beat oscillator, final anode, electrostatic lens. nonlinear resistance, etc.).
420
$\mathbf{p p s} .$,
$\mathbf{4 8 7}$ illustrations. Hardbound.
List Price $\$ 8.95$ Order No. 300

Major Appliance Repair Guide

Everything you need to know to fix any
major electrical appliance is contained sive, up-to-date vol-
ume. The authors exume. The authors exgreat detail, and ilustrate typical situaphotos and drawings Numerous you pinpoint the cause of virtually Repair procedures are included for dishwashers. clothes washers, dryers Hater heaters, garbage disposers, and
ranges, using typical models and case history data drawn from actual experience. In every case, the mateearth reasoning and techmíues. 28
pps.: over 260 illus. Hardbound.

List Price $\$ 8.95$ - Order No. 555

Practical Test Instruments You can build

Understanding \& Using the Oscilloscope

Auto Stereo Service \&

Commercial FCC License Handbook
$=-\cos$ A new and unique E TIIEAIIL E= ence manual, combinfity en eations with appliLIRTist HITMT运 En plus broadcast and (o know is you need you may be asked when subject amples are used to describe the exous principles you need to undercase, the author painstakingly explains the answers to questions on
all subjects. 1'repares you for any Mardbound.
List Price $\$ 9.95$ - Order No. 582

Pictorial Guide to CB Radio Installation \& Repair
\qquad

 + wis the
ques
equall equally applicable
to commerctal and ham systems. complete guide to the checkout, and mainof monce of all types ers and antennas. both mobile and fixed. Covers reducing TV interference, minimizing possible lightning
damage, setting up a telephone-toradio interconmection, and antemna setup and site selection. shows, in the coaxial line, tune the antenna, reduce cable length to increase an-
tenna gain, etc. 256 pps . Hardbound.
List Price 57.95 - Order No. 683

Handbook of Semiconductor Circuits

Acoustic Techniques
for Home \& Studio

Ten-Minute Test Techniques for PC Servicing

um and silicon transistors and list them on a small chart pasted to the side of your VOM.

Two other notes of caution: 1) Check the voltage between the test leads of your ohmmeter. Some ohmmeters have 6 or more volts between their test leads in the high-ohms ranges. This amount of voltage can damage some "delicate" transistor junctions. 2) Check the polarity of your ohmmeter test leads. Some multimeters are designed so that the polarity of their input is reversed in the ohms function; the positive test lead becomes negative and the negative becomes positive.

IN-CIRCUIT TESTS

As stated previously, the very first step in testing semiconductors should be in-circuit voltage checks. When this is not possible, as in the case of power supply short circuits, or when the collector voltage is a high voltage at a high frequency (flyback circuits, etc.), ohmmeter checks should be made first.

In a normally operating circuit, there should be approximately 0.6 volts across the emitter-to-base junction of a silicon transistor and about 0.2 volts if the transistor is a germanium type. If this voltage is incorrect, do not assume that the transistor is defective until you have checked the various supply voltages. Often a voltage regulator or rectifier failure or a short elsewhere on the same supply line drastically alters supply voltages. For this reason, it is a good practice to always check supply voltages first.

Figs. 4, 5 and 6 illustrate the voltage conditions which will be present as a result of various defects in a common-emitter circuit equipped with an NPN transistor. (The same circuit equipped with a PNP transistor would display the same symptoms.) The common-emitter circuit was chosen as an example because it is used more often than the other two basic configurations. Although a few of the defects in Figs. 4, 5 and 6 will cause different voltage symptoms in common-base and commoncollector circuits or if different bias and stabilizing networks are used, the causes and symptoms in Figs. 4, 5 and 6 can be "transposed" to these circuit configurations by using the
following general diagnostic guidelines:

- If the base-to-emitter junction does not have the correct for-ward-bias (about .2 volts for germanium and .6 volts for silicon) and there is no evidence of current flow in the collector-to-emitter circuit (lack of voltage drop across resistors in series with the collector-to-emitter circuit and the supply source), check for defects in the base and emitter circuits.
- If the base-to-emitter junction is correctly forward biased but there is no evidence of current flow in the collector-emitter circuit, check for an open in the collector circuit.
- If the base-to-emitter junction does not have correct forward bias and there is evidence of current flow in the collector-to-emitter circuit, check for a short or leakage in the collector-to-emitter circuit.
The preceding guidelines presume that supply voltages have been checked and are normal.

Some technicians short the base-to-emitter leads and look for a reduction in the collector current as an indication of a good device. There are some pitfalls in this method, not the least of which is the possibility of destroying the transistor if you short the wrong leads, and the ever present hazard of your hand slipping and shorting to adjacent circuits. For such tests, I prefer to use an insulated mini-clip with extendable hooks which can be clipped right onto the transistor leads with little danger of shorting, even in tight spots.

Occasionally, you will run across a circuit in which the bias is incorrect but everything else in the set is normal with the transistor removed, and the transistor itself checks normal out of the set. In such cases, look for oscillation. An oscillating IF stage is common when someone has "tweaked" an alignment adjustment. Sometimes, other stages will oscillate at any frequency from audio to UHF if a bypass capacitor in a decoupling circuit opens. Use your scope and low capacitance probe to quickly spot such oscillations.

In many sets, several transistors are DC coupled in "chains." If one transistor is defective or the bias of a stage at the front of the chain is incorrect, the entire chain will display abnormal voltages. In such cases, you can save time by removing the transistors one at a time, for individual testing. If you find a defective one do not stop. Continue testing until you have examined the entire chain. Such circuits often have more than one defective transistor, because one failure triggers more.

Some modern circuits use Darlington transistors, which are really two cascaded transistors in one package, as shown in Fig. 7. Because they have three terminals, as any other transistor, it is rather mystifying to find about 1.3 volts between base and emitter. In Fig. 7 you will see that there are two emit-ter-to-base junctions in series between the base terminal and emitter terminal, which accounts for the base-to-cmitter voltage being twice that of the usual bipolar device.

A shorted power transistor in an audio output stage will cause blown fuses. An open device might not be so obvious because one half of a push-pull, transformer-coupled stage will still operate, although the audio will be distorted. OTL (output transformerless) complementary symmetry stages, on the other hand, do not function at all with one transistor defective.

Defective IF or RF stages might not completely eliminate a strong local signal, just as in vacuum tubeequipped circuits. There is enough capacitive feedthrough in a "dead" transistor to produce a degraded, snowy picture or, in the case of AM or FM radios, a weakened or noisy signal.

In resistance-coupled stages, certain defects will cause the base and collector voltages to shift significantly either above or below normal. However, in transformer-coupled RF, IF or AF stages there might not be sufficient load resistance to cause a noticeable DC voltage drop. In such cases, the voltage drop across the emitter resistor can be used as a quick and convenient means for calculating the transistor collector-toemitter current.

Your VTVM is obsolete!

This may sound like a harsh claim, but it's true. Thousands of TV technicians are using instruments designed in the 1950's to troubleshoot circuits designed in the 1970's.

And now, most color TV's have solid state circuits. So use of out-of-date test equipment just compounds the problem.

The generation gap has grown too big.

The Fluke 8000A $31 / 2$ digit multimeter

Solid state calls for new performance standards.

Your "old fashioned" test equipment simply doesn't measure up to today's requirements. For example, the typical VTVM gives you 5% accuracy and 2% resolution. In the old days, that was good enough. Not so today.

Now you need an instrument to look at the voltages at each pin of an IC with sufficient accuracy and resolution to determine proper IC operation.

For example, a reading of "around 2.8 volts" is no longer sufficient. You must be able to distinguish between 2.80 and 2.82 volts.

You need a test instrument that gives you 0.1 ohm resolution so you can reliably measure resistance of switch contacts, circuit breakers, and low value resistors.

To do all this and more, you need the superior capabilities of the Fluke 8000A $31 / 2$ digit multimeter.

An instrument designed specifically for testing solid state equipment.

The 8000A gives you up to 50 times the accuracy and 20 times the resolution of a VTVM, so you can measure the various voltage levels in a solid state chassis with absolute confidence.

Resolution is 100 microvolts, 100 nanoamps and 100 milliohms

You get the sensitivity you need for low level dc measurements. The 200 millivolt range with 100 microvolt resolution tells you exactly what your values are.

The 8000A has an AC frequency response from 45 Hz to 20 KHz and, with accessory probes, to 500 megahertz. Resistance measuring capability ranges from 100 milliohms to 20 megohms. It offers a $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ accuracy temperature span. And a 1-year accuracy time span, meaning it seldom needs calibration.

Unlike other DMM's the 8000A has fast response time -3 readings a second. And the bright, digital readout means that no interpolation is necessary.

The 8000A measures high voltages, too.

Our 8000A is designed to answer all the needs of an electronic service technician.

One very important (and talked about!) safety requirement is that the picture tube anode voltage must not exceed the maximum specified by the manufacturer. Our 000A has an optional high voltage probe that gives you guaranteed accuracy of 1% at 25,000 volts. The probe also extends the capability of the 8000A to 40,000 volts to measure the high voltage in the new 32,000 volt chassis.

High voltage probe accessory gives you 1% accuracy at 25,000 volts

Get the most up-to-date instrument available.

Don't be caught in the typical trap. Many electronic service shops don't really update their equipment when they decide to update. Switching to a TVM or a FET voltmeter doesn't really give you the accuracy and resolution you need today, or for that matter, tomorrow.

But with the 8000A on hand, you know you have a true solid state testing device.. an instrument that can do the job the way it should be done.

Carry it anywhere. Use it on line or rechargeable battery power. Note the conveniently mounted specs on the bottom decal. They're always with you.

The 8000A comes from Fluke, one of the largest instrument companies in the U.S.

It costs just \$299 (\$40 more with HV probe). * And it is far and away the largest selling, most rugged and reliable $31 / 2$ digit multimeter in the world.
"Domestic only.

For data out today, dial our toll-free hotline, 800-426-0361

John Fluke Mfg. Co., Inc., P.O. Box 7428, Seattle, WA 98133

Profitable and Competitive Pricing of Home Service Calls

By J. W. Phipps

How to use your hourly service labor rate to compulte the flat rate you should charge for home calls

Profitable pricing of both in-shop and in-home servicing requires that you determine precisely what it costs you to produce a manhour of service labor. Regardless of the particular method of service labor pricing you use-whether it is flat-rate (by the
job or function), hourly (actual time involved), or some combination of the two-the basis of your pricing structure is the service labor manhour and what it costs you to produce and sell it. This applies to both in-shop and in-home servicing.

TABLE 1

COSTS OF PRODUCING SERVICE LABOR		
technician wages \& Payroll expenses		
Technician Wages	\$44,720	\$48,519
Employer Social Security Contribution	1,230	
Employer Unemployment Contribution	895	
Employer Life \& Medical Insurance Contribution	1,200	
Employer Pension Contribution	474	
GENERAL AND ADMINISTRATIVE EXPENSES		
Secretary/Bookkeeper Wages	\$8,320	
Employer Social Security Contribution	229	
Employer Unemployment Contribution	166	
Employer Life \& Medical Insurance Contribution	300	
Employer Pension Contribution	100	
Building Lease	3,600	
Utilities (including heating \& air conditioning)	1,500	
Telephone	500	
Office Equipment Depreciation	100	
Office Supplies	600	
Advertising Expenses	1,000	
Legal/Auditor Fees	400	
Insurance (All other than employee)	800	
Taxes (all other than Fed. \& State income tax withholding)	800	
Interest \& Bank Charges	800	
Misc. (Assoc. dues, subscriptions, license fees, etc.)	300	
OPERATING EXPENSES		
Owner's Salary	\$18,000	
Social Security Contribution	990	
Unemployment Contribution	360	
Life \& Medical Insurance Premiums	400	
Pension Premium	300	
Vehicle Operating \& Maintenance Expenses	1,800	
Vehicle Depreciation	2,400	
Shop Equipment Depreciation	1,000	
Expendable Items, Shop (cleaners, solder, tape, etc.)	400	
Service Literature	100	
		\$25,750
TOTAL SERVICE LABOR BUSINESS COSTS		\$93,784

The procedure for computing the hourly service labor rate you must charge to recover all business expenses and realize a specific margin of profit was outlined last month in an article titled Profitable and Competitive Pricing of Service Labor. This procedure involves the following steps:

1) Computation of the total expenses incurred in the operation of your business (Table 1)*
2) Computation of desired profit (Table 2)*
3) Computation of gross service labor income required to recover expenses and produce the desired profit (Table 2)*
4) Computation of the total manhours which will be available for direct billing to customers (Table 3)*
5) Computation of hourly service labor rate by dividing the required service labor income by the number of manhours available for direct billing to customers (Table 4)*.

The resultant hourly service labor rate should serve as a basis for both in-shop and in-home servicing. The reason for this is that many of the expenses incurred in the operation of your business are "shared" by both in-shop and in-home servicing and cannot be accurately apportioned between the two without the use of a very detailed and complex cost accounting system, which, for most shops, would be so inconvenient and time consuming that it would be self-defeating. For example, although expenses such as technician wages and payroll expenses, vehicle depreciation and vehicle operating and maintenance usually can be accurately apportioned between in-shop and in-home servicing, others such as building lease, telephone, office equipment and test instrument depreciation usually cannot be accurately apportioned between the two types of servicing. Therefore, unless you already have a proven cost accounting system which permits you to apportion shared expenses with an acceptable degree of accuracy and without consuming too much of your time and that of your technicians, you probably should combine all expenses related to service labor and compute a single service labor hourly rate based on the combined expenses.

APPLYING YOUR HOURLY SERVICE LABOR RATE TO IN-HOME SERVICING

After you have computed the hourly service labor rate you must charge to recover all business expenses and realize a specific margin of profit, you are ready to compute what you must charge for a home service call.

There are at least three tried-andproven methods for flat-rate pricing of home service calls:

1) You can charge a flat rate which covers the time it takes you or your technicians to travel to the customer's door plus a specific increment of service time in the home (usually 30 minutes). Time consumed in the home in excess of the specified increment allowed by the flat-rate charge is charged the customer on an hourly basis. For example, if the technician spends an hour in the home and your flat-rate home-call charge includes only the first 30 minutes, the additional 30 minutes is charged the customer by multiplying the shop hourly service labor rate by .5 (one half hour).
2) You can flat-rate only the time it takes the technician to travel to the customer's front door and then charge all service labor time in the home on a straight hourly basis.
3) You can flat-rate the technician's travel time and use it as your home-call charge and then charge the customer separate flat rates for each separate function the technicians perform in the home.

You can adopt any one of the preceding methods and make it work for you if the basis of all three methods-your hourly service labor rate-accurately reflects your business costs and the margin of profit you desire.

The only other factor which will significantly affect the profitability of your home-call operation but which is not directly accounted for in your hourly service labor rate is the travel time between service calls. Profitable and competitive flat-rate pricing of home service calls requires that you be able to predict, with reasonable accuracy, the amount of time typically required for your technicians to travel from one call to the next. (Your hourly service labor rate tells you how much you must charge for this time, but it does not tell you how much
time is involved.) There are two generally accepted methods which you can use to determine how much travel time you should "build into" your flat-rate home-call charge.

The most accurate method is called averaging. During a period of time (the longer, the more accurate), each home-call technician maintains a \log on which he records the times he leaves one call and arrives at another. At the end of the sampling period, the travel times recorded on the logs are totaled and then divided by the number of calls made. This tells you what the average travel time per call was during the period. You then multiply the average travel time (in increments of an hour) by your hourly service labor rate. For example, assume that the average travel time between service calls for your technicians is 20 minutes (.33 of an hour) and your hourly service labor rate is $\$ 20.00$.

Your minimum flat-rate for home service call travel then would be .33 $x \$ 20$, or $\$ 6.60$. If your home service call rate includes 30 minutes of service time in the home, you add to the $\$ 6.60$ "travel charge" an amount equal to .5 (one half hour) x your hourly service labor rate, which in this example is $.5 \times \$ 20$, or $\$ 10.00$. The total of the two produces a home service call charge of \$16.60.

The other method of computing travel time is to determine the maximum, or worst-case, time your technicians would spend traveling from the geographical center of the area in which you offer service to the farthest point in the area. You then multiply your hourly service labor rate by this hourly increment of travel time.

The averaging method usually produces a more realistic and more competitive home service call charge

TABLE 2

ANNUAL SERVICE LABOR RECEIPTS REQUIRED FOR DESIRED PROFIT

1) TOTAL SERVICE LABOR COSTS (TABLE 1)
2) DESIRED PROFIT EQUALS 20% GROSS SERVICE LABOR INCOME
$\frac{3}{4}$ TOTAL SERVICE LABOR COSTS (TABLE 1) $=$ DESIRED PROFIT, or

$$
\frac{\$ 93,784}{4}=\$ 23,446
$$

4) DESIRED PROFIT + TOTAL SERVICE LABOR COSTS = REQUIRED ANNUAL GROSS SERVICE LABOR INCOME, or $\$ 23,446+\$ 93,784=\$ 117,230$

TABLE 3

SERVICE LABOR MANHOURS AVAILABLE FOR DIRECT BILLING TO CUSTOMERS

total service labor hours per year Per technician		2080 Hrs.
NUMBER OF FULL-TIME TECHNICIANS		
TOTAL SERVICE LABOR MANHOURS PER YEAR		8320 Hrs .
MANHOURS DEDUCTED FOR PAID VACAT!ONS \& HOLIDAYS		
Vacations (2 wks. per year per technician)	. $320 \mathrm{Hrs}$.	
Holidays (5 days per year per technician)	. 160 Hrs.	
TOTAL	. 480 Hrs .	
Service Labor Manhours Per Year		8320 Hrs .
Service Labor Manhours Deducted for Vacations \& Holidays		480 Hrs .
TOTAL Manhours Technicians on Job LABOR Recovery Rate (80%)		$\begin{array}{r} 7840 \mathrm{Hrs} . \\ \times .80 \end{array}$
TOTAL SALEABLE MANHOURS		6272 Hrs.

TABLE 4

SERVICE LABOR HOURLY RATE REQUIRED

$\frac{\text { SERVICE LABOR INCOME REQUIRED (TABLE 2) }}{\text { TOTAL SALEABLE MANHOURS (TABLE 3) }}=\frac{\$ 117,230}{6272 \mathrm{Hrs} .}=\$ 18.70$ per Hr.
than that produced by the worstcase method. For this reason, most shop owners prefer to use the averaging method for computing the "travel portion" of their home service call charge. The worst-case travel time then is used only as a reference against which to compare the effectiveness of their call routing and dispatching techniques, as described later.

Regardless of which method you use to compute the travel time between home service calls, it will bc valid only if you establish a definite geographical area for the travel time study, and apply the resultant flatrate home call charge only to calls made within that area. Because calls beyond this area will require additional travel time, the charge for such calls should be your flat-rate charge plus an extra charge based on the miles (or increments of a mile) the call is located outside your normal operating area.

PERIODIC EVALUATION OF YOUR HOME CALL RATE

Because a significant portion of your cost of producing a home ser-
vice call is attributable directly to travel time between calls, periodic re-evaluation of average travel time is essential for continued profitability of your home-call servicing. For this reason, it is recommended that you have your home-call technicians maintain a daily travel \log on which is recorded the exact time they leave one home and arrive at the next. The \log should clearly reveal the travel time between calls, the number of calls, and the time spent in the home. Weekly or monthly assessment of the logs will tell you whether or not the average travel time between calls is exceeding the average time on which your homecall charge is based. If it is, you either will have to improve your routing and dispatching techniques to reduce the travel time or you will have to recompute your home-call charge so that it is based on the increased average travel time. As a general rule of thumb, anytime your average travel time between calls exceeds one half your worst-case travel time, you should improve your routing and dispatching techniques to reduce it.

Another method of evaluating the validity of your home-call pricing structure is to: 1) Add up the travel and in-home time recorded on your technicians' travel logs during a specific period, 2) multiply this total time by your hourly service labor rate, and then 3) compare the resultant total with the gross income (minus parts income) you actually received from home call servicing during the period. If the total arrived at in step 2 does not equal or exceed the actual "service labor" income received from home-call servicing during the period, either your hourly service labor rate or your home-call rate (or both) is not adequate to recover all service-labor expenses and produce the profit you desire. You then should recompute both your hourly service labor rate and your home-call rate.

IN MARCH: Incentive Pay Programs for Your Technicians.
*The specific amounts listed in these tables are intended merely as examples and are not representative of those incurred in any particular business.

RCA's new 3 -inch scope...an entire servicing system for only \$229.*

1. It's an 8 MHz generalpurpose scope. Typical composite TV video signal.

2. It's a Vectorscope for color TV AFPC alignment. Color bar generator used for test signal.
For fast delivery and full information on the new WO-33B, contact any one of the more than

1,000 RCA Distributors worldwide. Or write: RCA Electronic Instruments Headquarters, Harrison, N.J. 07029.
 Specialists demand the best tools of their trade.

2. It's a "Quicktracer" Transistor/ Diode and Component Tester. Typical junction waveform.

4. It's a "ringing" tester for coils, yokes, transformers. Typical ringing test pattern.

Antenna sales slipping? Profits sliding? We can give you some timely, tested, proved effective help. A special Biz Boomer-Upper Kit with 15 sales-getter ideas and the materials you need to put 'em in action.

The kit's yours at no cost from your Winegard distributor. Designed so that together you can launch a planned program to sell replacements for all those tired old weather-beaten or damaged an-
tennas on homes in your area.
In today's competitive climate, this could be the extra promotion power you need to push profits up to-or ahead of last year's. Definitely, an offer you shouldn't refuse.

Not yet in the antenna business? There's plenty of potential going unsold right now. And your Winegard distributor can help you cash in. Why not contact himtoday.

New in Color TV for 1975-Part 5

By Joseph Zauhar

Continuation of a series

 which analyzes the new and significantly changed circuits in 1975 color TV receivers. This month we will review RCA's T-Line Series chassis.

Fig. 1-The two-transistor, "cascode-type" VHF mixer has been replaced with a dual-gate MOSFET mixer. Courtesy of RCA.

- Six chassis are employed in RCA's color TV line: The CTC58, 68,71 , and 72 are all-solid-state chassis. Two continued hybrid chassis, the CTC51 and CTC53, manufactured prior to the transition of RCA to an entirely solid-state line, are used in the 14 -inch and 18 -inch (measured diagonally) screen sizes.
The XL-100 chassis series used in the new line have many common features: modular construction, a MOSFET mixer used in the VHF tuner, negative matrix picture tube and screen temperature setup to 6500° Kelvin, rather than the 9300° K used previously.

CTC68 CHASSIS

The CTC68 chassis was first introduced in the RCA S-Line series of color chassis but many refinements in its design have been made. The design changes include new, but compatible, audio output and kine driver modules, elimination of the standby filament power consumption, an improved tuner, digital channel indication in some models, and a different remote control system in some models.

VHF Tuner

The two-transistor, "cascodetype" mixer that was used previously in the KRK205 tuner, employed in the early S-Line chassis has been replaced by a MOSFET device using a similar circuit configuration. The KRK211 tuner shown in Fig. 1 uses a dual-gate MOSFET mixer

Fig. 2-Schematic diagram showing the changes made in the power supply employed in the CIC68 color IV chassis. Courfesy of RCA.
which provides high input impedance, a good noise figure, and low susceptibility to cross-modulation.

Low Voltage Power Supply

To conserve energy, the "InstantPic" has been eliminated from all TLine color TV receivers.
A few early-production chassis will have the standby filament transformer that was used in S-Line chassis, but the wiring has been changed as shown in Fig. 2.

Two slightly different power transformer circuits are used in the CTC68 chassis. In some early production chassis the "Instant-Pic" feature is eliminated by changing the primary lead at the standby filament transformer (T104) to the off side of the line switch and the transformer is energized only when the on/off switch is switched on. In the majority of the chassis, the new design power transformer (T103) is used, providing the 6.3 volt source for the picture tube filament and transformer T104 is eliminated.

If either transformer is replaced in chassis which have both be sure to maintain the correct phasing of the filament winding (following the color coding). If the winding connections of either transformer is reversed, the two filament voltages will be out of phase and the on filament voltage will drop to about four volts,

Fig. 3-The simplified illustration shows how the digits zero through nine can be formed by illuminating various sections of the sevensegment display forming channel numbers. Courtesy of RCA.
producing a symptom resembling a low-emission picture tube.

Digital Channel Indication

Various T-Line models using the CTC68 chassis have digital channel indication by using seven-segment, gas-discharge lamps, indicating both VHF and UHF channel numbers. A separate pair of neon lamps are used to indicate VHF or UHF operation.

Digits from zero through nine can be formed by illuminating various sections of the seven-segment display Fig. 3. When a particular cathode of a gas-filled indicator lamp is energized, it glows to make that segment visible and the numeral 8 is formed by energizing all seven segments.

A simple switch is shown in Fig. 4, with contacts connected to illuminate sections B and C of the lamp; the B+input, which is common to all elements (anode connection), is supplied through a dropping resistor to the indicator lamp unit. The cathode elements B and C within the lamp are connected to ground through the switch contacts, energizing them and forming the numeral one.

Proper indication of all VHF and UHF channels requires the use of two indicator lamps encased in the same assembly and are labeled "tens" for the left-side indicator, and "units" for the right-side indicator.

UHF Indicating System

Shown in Fig. 5 is the Units section of a simplified UHF Indicating System which is an equivalent switch circuit, providing UHF channel indication. If a ground is connected to the lamp segments B and C through the isolation diodes B and C, diode CR6202 and switch Sf002 we will get a numeral " 1 ." In this position all other contacts of the switch are in the open position.

The "tens" switch and diode assembly is not shown but it is basically the same as the "units" section. Because of the VHF switching contact sequence, isolation diodes are only required for the B and C segments. The "tens" switch also uses diode CR6202 and switch S4002 to complete its path to ground in the UHF mode. This connection is indicated in the schematic by the
"common" line on the right side of the schematic.

Switch S4002 is located on the VHF tuner shaft and disconnects the common ground connections from the UHF indicator switches for VHF reception. It also operates the two neon lamps for UHF or VHF indication.

The UHF switch assembly consists of two rotating discs, each in contact with an eight-contact wiper assembly (one common and seven switched leads).

VHF Indicating System

The operation of the VHF channel indicator switch is similar to the "units" section of the UHF switch, and seven of its output leads are
connected to the "units" lamp for number indication of channels 2 through 9. The "common" side of the VHF switch (Fig. 6) connects directly to ground, and has eight switched contacts. The eighth switched lead is connected through isolating diodes to the A and B segments of the "tens" lamp. The addition of this eighth contact to the switch simplifies the system, and eliminates the need for a separate VHF "tens" switch. All contacts are open in the UHF position.

VHF/UHF Mode Indicators

The VHF/UHF Mode Indicators employ a simplified system of indication. The VHF or UHF functions operate in conjunction with switch

Fig. 4-A simplified indicator switch, with contacts connected to iliuminate sections B and C of the lamp. Courtesy of RCA.

Fig. 5-Simplified illustrations showing the Units section of the UHF Indicating System. Courfesy of RCA.

Fig. 6-Simplified schematic diagram showing the VHF Channel Indicating System. It is similar to the units section of the UHF switch. Courfesy of RCA.

Fig. 8-Partial schematic of the ACM IV circuit used in other XL-100 color IV chassis, with the CTC58 chassis noted. Courtesy of RCA.

S4002 which is found on the VHF tuner. To indicate VHF or UHF reception a separate pair of neon lamps are used as shown in the simplified schematic diagram Fig. 7. The VHF/UHF Indicator Lamp Switching is shown in the UHF position. Switch S4002 is closed, completing a path from the cathode of diode CR6201 to ground. The circuit is completed to illuminate the UHF indicator lamp through the 68 K resistor to $\mathrm{B}+$. The dotted line
connection to ground shows the condition of the VHF lamp when in the UHF position and diode CR6003 is conducting, therefore, both sides of the VHF lamp are grounded.

As the VHF tuner is rotated from the UHF position, switch S4002 opens, and the two diodes switch off, and the ground connection is removed from the high side of the VHF indicator lamp, permitting it to illuminate. The UHF lamp is defeated because no ground re-

Fig. 7-Simplified schematic diagram showing the separate pair of neon lamps used to indicate VHF or UHF reception. Courtesy of RCA.
turn connection is available to diode CR6201.

CTC58 CHASSIS

Two types of the carry-over CTC58 chassis will continue in the T-Line Series for 1975. The chassis will be employed in 21 - or 25 -inch (measured diagonally) console and table model TV sets.

Both chassis versions are electrically identical except for changes in the section of the power transformer circuit supplying the picture tube filament voltage. This change was made because the Instant-Pic feature was eliminated.

Another significant change made in the CTC58 chassis is the removal of the ACM IV switch, but two of the AccuMatic $B-Y$ phase angle change and the $B-Y$ demodulator gain change functions have been retained. These functions effectively provide the optimum color demodulator characteristics of the ACM IV system used in other chassis. Shown in Fig. 8 is a partial schematic of the ACM IV circuit used in other XL100 color chassis, with the CTC58 chassis changes noted.

In the CTC58L and N chassis, removal of the " A " section of the ACM IV switch effectively turns on the B-Y phase shift circuit on the MAE001B module.

Removal of the " B " section of the switch, in conjunction with the new value of R315, adjusts the kine drive characteristics to yield the reduced B-Y demodulator output-as though the ACM function were turned on.

The tuners used with the CTC58 chassis will include the KRK199 VHF and KRK207 UHF units.

CTC71 CHASSIS

The CTC71 chassis is continued in the T-Line for 1975. This chassis will be used in several non-remote table models featuring a 19 inch (measured diagonally) screen.

The PW300 signal circuit board uses the same module complement as that of other current XL-100 chassis. The MAC002A Chroma-1 module has been superseded by the new MAC002B module, employing an advanced phase-locked-loop IC for the 3.58 MHz subcarrier regeneration. It is a direct replacement for the earlier "A" version. This module is common to all 1975 XL100 chassis.

The horizontal-deflection system uses the transistorized sweep circuits first introduced in the CTC60 chassis. This chassis develops 27 kv of high voltage through a silicon tripler, the horizontal-deflection system is powered from a regulated 125volt source and overload protected by an integral current-limiter circuit.

In comparison to its predecessor CTC60, most of the hold-down circuitry is contained on the MAH004 horizontal-oscillator module, rather than on the PW400 deflection board.

The vertical deflection system in the CTC71 uses the familiar MAG001 module and chassismounted vertical output transistors.

The tuners used in this is MOSFET mixer KRK 199 VHF tuner and the digital-indicator KRK207, 70-detent UHF tuner. AccuMatic IV, AFT, and extended life neon pilot lamps are used in color TV sets employing the CTC71 chassis.

CTC72 CHASSIS

Three different versions of the CTC72 introduced in March and June will be used with portable and table model color TV receivers. The three types include the CTC72B which is used in non-remote 15 -inch (measured diagonally) TV sets, and
the CTC72N for non-remote 17inch (diagonal) screen size TV sets.

All TV models introduced in March featured a negative-matrix precision in-line (AccuLine) color picture tube, digital UHF tuning, and AFT.
In June, a remote-control 17-inch (measured diagonally) TV set, Model ET396R, was introduced. This chassis includes all of the above features plus remote control functions for channel and volume change and on/off.

The remote control used in the CTC72R chassis is the familiar twofunction type, which remotely controls a 20 -detent channel-selection system used previously, and a vol-ume-stepper circuit which allows three preset volume steps and "off."

The CTC72 chassis is electrically similar to the CTC62 that it replaces, only the Instant-Pic feature has been eliminated, requiring a few minor changes in the power switching circuit.

Let us send you 33 proven ways to conserve energy in your business

We would like to tell you how Energy Management can help maintain your company's profitability. Send for your " 33 Ways" booklet and we will send you something else: "How to Start an Energy Management Program."

Digital Frequency Counters for Servicing-Part 1

By Joseph J. Carr, CET, ET/D Contributing Editor

Operation, specifications and applications

- Until recently, digital frequency and period counters have been highcost, exotic instruments associated with "highdollar" communications shops, government financed R \& D laboratories
and test equipment/metrology facilities.

Modern electronic technology has changed all of that, allowing manufacturers to offer, at substantially lower cost to the user, quality digital counters
whose performance often exceeds that of all but the best previous designs. As an example of this trend, consider those highly accurate, FCC-type-accepted counters often seen in mobile radio repair shops.

Fig. 1-A decimal counting assembly (DCA) consists of several decimal counting units (DCU's) in cascade. Each DCU counts from 0 to 9 and controls one digit of the multi-digit display.

Fig. 2-Simplified block diagram of a low-cost TTL decimal counting unit capable of counting to over 20 MHz . The latch circuit keeps the display stable.

Fig. 3-Block diagram of a typical frequency counter.

Fig. 4-Block diagram of period counting functions. Period counters measure the time interval between the beginning of successive pulses by reversing the function of the input amplifiers and the time base viz a viz the control flip-flop.

Just a few years ago, such instruments carried price tags of between $\$ 1800$ and $\$ 4000$. Today, at least one instrument in that class can be purchased for less than $\$ 800$. Some non-type-approved digital counters sell for less than $\$ 100$, while a few still carry prices in the multi-kilobuck range. The cost of digital counters has decreased to the point that some top-dollar signal generators are equipped with a built-in frequency counter which functions as the dial read-out.

In this two-part series, the internal circuitry of digital counters will be examined and their utility of application around almost any electronic service shop will be demonstrated. We also will give you some insight into digital counter terminology and specifications, so that you can make intelligent purchase decisions which avoid the pitfalls of "creative spec" writing.

DECIMAL COUNTING UNITS

The real heart of the digital counter is a digital electronic circuit which accumulates pulses and drives a readout device which tells the outside world how many pulses (from 0-9) have been counted. Such circuits, called decimal counting units (DCU's), can be cascaded to provide a wider counting range (i.e., $0-$ 99, 0-999, etc.). A bank of several DCU's in cascade, as shown in Fig. 1, is called a decimal counting assembly (DCA). One DCU is required for each digit in the DCA.

One of the factors which pushed up the price of counters in previous years was that the DCU was made of (then) very
expensive digital-logic integrated circuits. A typical digital counter IC then cost more than $\$ 15.00$. Or they were equipped with transistorized flip-flops, which were equally expensive. When the transistor design was used, four flipflops were needed per digit. And the transistor type of DCU often proved difficult to decode, making it even more costly to use. All DCU's, incidentally, require decoding because the counters operate in binary coded decimal (BCD). In that number system, four "bits" (voltage levels) are presented, each on separate lines, to represent the decimal digits between 0 and 9 (i.e., $2=0100,6=0110,9$ $=1001$; where binary 0 is either "ground" or some negative voltage, and binary 1 is either a positive voltage or a negative voltage, depending upon the system).

Fig. 2 shows the partial schematic of a relatively common DCU using tran-sistor-transistor digital logic (TTL) integrated circuits. At one time, these devices cost an arm and a leg, but they now are relatively cheap. The SN7490P decade counter, for example, can be purchased for $\$ 1.00$ to $\$ 4.00$, depending upon the source.

The type of decade counter used in Fig. 2 can count to speeds somewhat in excess of 20 MHz , while certain high-speed TTL chips count to 50 or even 80 MHz . The internal circuitry of the SN7490 includes all of the flip-flops and gating needed to form a decimal counter.

In many counters, especially in older designs or a few newer but very lowcost types, the decade
counter directly feeds the binary coded decimal (BCD) lines to the decoder circuit. This design produces a rolling display that is a little hard to read. You can actually see the digital readout of these instruments change as pulses are accumulated much in the same manner as the digits on a gasoline pump "roll" as price is accumulated.

To keep the display steady, most modern counters, even those of modest cost, use a four-bit memory, called a quad latch, between the counter and decoder circuits. A latch circuit "remembers" the BCD state which existed at its input the last time the strobe terminal was enabled (turned on). This design allows the display to be "instantly" updated at a rate determined by the repetition rate of the display multivibrator, which is set by a control on the front panel. In some low-cost designs, the display is still fed by a latch, but the display rate is fixed. You can tell whether or not a counter is equipped with a latch. If it is, the display update will occur all at once; the new digits seem to pop "pre-counted" onto the readout. Non-latched types will exhibit the "roll" symptom.

FREQUENCY COUNTER DESIGN

Fig. 3 is the block diagram of a typical digital frequency counter. Although this particular design is not found in all digital frequency counters, it is sufficiently representative to be used for explanatory purposes. The differences between the design in Fig. 3 and other designs usually involves special
features in special-purpose counters (i.e., high-resolution types) or, in low-cost types, deletion and/or automation of some of the features in Fig. 3.

In counter jargon, the term "frequency" is called events per unit of time (EPUT). Remember, before they changed the jargon, frequency was "cycles (events) per second (unit of time)." Any EPUT counter requires a main gate, which allows pulses being counted into the DCA. The gate is opened and closed by a train of pulses from a time base circuit. These pulses also are used to reset the DCA to zero state, so that a true count is obtained. Without a main gate, the DCA would simply continue to accumulate input pulses with no relationship to time.

PERIOD COUNTER DESIGN

A period counter (Fig. 4) is used to measure the amount of time between successive pulses. This can be accomplished by merely reversing the functions of the input amplifier and the time base. The main gate flip-flop will be enabled by a pulse from the input amplifier, and closed by the next pulse. Time base pulses are passed through the gate to the DCA. If a $1000-\mathrm{Hz}$ time base signal is used, the period is measured in milliseconds. Many counters allow selection of the time base frequency.

There are many uses for a period counter, but the two main applications are in measuring low-frequency signals (less than 100 Hz) or higher frequencies where much greater resolution than 1 Hz is required. An example of the latter use is in electronic

Fig. 5-A "count" can be achieved only when the input signal crosses both the upper and lower bounds of the trigger's hysteresis window.
musical instruments, in which certain of the tones are specified to within three decimal points of one hertz. In such cases, you simply choose a time base frequency high enough to give the desired resolution, and then perform this arithmetic:

$$
\begin{aligned}
& \text { Freq. }(\mathrm{Hz})= \\
& \frac{1}{\text { Period }(\mathrm{sec})} \text {, or } \\
& \text { Period }(\mathrm{sec})=
\end{aligned}
$$

$\overline{\text { Freq. (Hz) }}$

TIME BASE CIRCUITS

The length of time that the gate stays open is a function of the time base frequency. A time base is a precise crystal-controlled oscillator followed by some TTL decade dividers (the same SN7490P IC used in the DCU, but without decoding). Typically, $1-\mathrm{MHz}$ oscillators are used, but 3-, 4-, 5- and $10-\mathrm{MHz}$ types are occa-
sionally used.
Some counters provide a switch which allows the user to select time base intervals between .0000001 (. 1 microsec) and 10 seconds. This is done by selecting frequency through choice of division ratio. (Each SN7490P will provide an output frequency $1 / 10$ of the input.) Typically, 10 MHz gives gate times of .1 microsecond, 1 MHz yields 1 microsecond, 1 Hz gives 1 second, etc. Many of the lowercost counters provide limited manipulation of the time base through a " Hz / KHz " or " $\mathrm{KHz} / \mathrm{MHz}^{\prime}$ switch.

One of the principal counter specs is time base stability and accuracy. Although the inclination may be to buy a counter with top time base specs, this can needlessly overprice your instrument. Where exceptional accuracy is not needed, a non-compensated, room-temperature

Fig. 6-Trigger controls vary the position of the hysteresis window up and down on a voltage scale so that signals of either polarity, with or without a DC component, can be counted.
time base usually will suffice. These circuits can offer stability figures on the order of 5×10^{-6}. A step better, offering five times the stability, are tempera-ture-compensated crystal oscillator (TCXO) designs. In some cases, TCXO counters are accurate and stable enough to receive FCC type approval.

Oven-controlled oscillators offer the best stability. Simple thermostat-controlled oscillator ovens offer better stability but are still somewhat inferior to those using proportional control ovens. This design produces a more constant temperature. A singleoven proportional control oscillator can keep the frequency within $\pm 5 \times 10^{-8}$. The most stable and accurate counters use double oven oscillators, which have the actual crystal oven inside a second oven. Such arrangements are capable of maintaining crystal temperature within
$.01^{\circ} \mathrm{C}$, producing a frequency stability of 5 x 10^{-11}. Of course, expect double-oven time base oscillators only in the most expensive counters.

TIME BASE AGING

Crystal oscillators, even high-grade types, always drift over a period of time. This slow drift is usually predictable and is expressed as an aging rate. This is the reason for periodic trips to the calibration laboratory or manufacturer, if it is desired to keep the instrument up to its original specs. How often calibration is needed is a function of the aging rate.

Keep in mind that even the best counters with really good stability figures have an aging rate. Also, their normal stability cannot be expected until the instrument has been on for at least 24 continuous hours. Because of this,

Fig. 7-Several of the waveforms which cannot be counted by a digital counter with a fixed hysteresis window.
many counters use a special power supply for the time base oscillator. This accomplishes two things: 1) The power supply regulation is improved because the loading is essentially constant, and 2) the oscillator supply can be left on even when the counter is turned off. If you cannot keep your instrument plugged in (so that the oscillator will run continuously), it may be necessary to buy one with at least one order of magnitude better stability than would otherwise be needed. Some battery types are good in this respect because they can be left with the oscillator on during unplugged periods (i.e., in your service truck between jobs). The standard of accuracy for a counter is not less than five times the accuracy required of the frequency under examination. For example, a Citizens-Band transmitter must be within
$\pm 50 \mathrm{ppm}\left(5 \times 10^{-5}\right)$; consequently, a counter for CB servicing should have an accuracy not worse than 10 ppm , with 5 ppm being best.

TRIGGER CIRCUITS

Most counters are equipped with Schmitt trigger circuits which have both upper and lower threshold bounds (see Fig. 5). An input signal must cross both threshold levels if the DCA count is to be affected. The difference between these limits is called the hysteresis window. Its function is to allow only one pulse to be generated for each input cycle. Otherwise, it would be possible for non-sinusoidal waveforms to falsely trigger the DCA. The trigger control varies the position of the window relative to a minus-zeroplus voltage scale, so that a variety of input signals not centered about zero can be counted. Other-
wise, a signal with a DC component might not be counted even though its own relative amplitude is greater than the advertised sensitivity of the counter. Fig. 6 shows the action of the trigger control. Fig. 7 shows several types of waveforms which cannot be counted on an instrument with a fixed hysteresis window.

Some counters do not have a continuously variable trigger control but, instead, are equipped with a three-position switch typically labeled either " $+, 0,-$ " or " + , present." In many applications, this arrangement is less desirable than a continuous control, but is better than no control at all. A trigger control is almost a necessity for TV applications because the pulses encountered may have either polarity, with or without a DC component. The rarely seen trigger amplitude control does not affect the "center" position of the window, but does vary its "width."

COUNTER SENSITIVITY

One parameter which, like hi-fi power output, has been subjected to a lot of "creative" spec writing is sensitivity. On the surface, it might appear that the more sensitivity, the better. However, this is not always true. Sensitivity is the minimum amplitude of signal which can reliably trigger the counter. If the sensitivity is too great, noise might falsely trigger the instrument; if the sensitivity is too low, desired signals might be ignored.

Sensitivity is often expressed in either RMS volts or in a certain pulse amplitude (also volts). In any event, most trigger circuits have a pulse sensitivity that is 2.82 times the

RMS figure. If both figures are specified, be a little wary of the instrument which has a ratio significantly different than this value, because there might be something wrong with the sensitivity at higher frequencies.

It is difficult to state a specific optimum counter sensitivity. All that is possible are some general sensitivity guidelines, which are dependent on input impedance. Sensitivity values which usually are acceptable are $25-100$ millivolts RMS for 1-megohm inputs, and $10-50$ millivolts RMS for 50 -ohm inputs. Generally, counters under 200 MHz have high-impedance inputs, and those over 200 MHz have a 50 -ohm input.

VHF COUNTING TECHNIQUES

Common TTL digital IC's are capable of counting up to about 80 MHz . IC's in the ECL family are capable of being operated at twice this frequency, but are neither as cheap nor are they directly compatible with TTL. Very special (and expensive) ECL types can count in excess of 500 MHz . Be-
yond these limits, or even up to them if cost is a factor, other techniques must be applied. There are at least three methods for achieving a high-VHF/ UHF counter: direct counting, prescaled counting, and heterodyne counting.

Direct counting is the normal mode of operation for digital frequency counters. Most common counters can direct count to around 80 MHz . If an ECL first stage is used, this "normal" limit is pushed to 180 MHz . Keep in mind that direct counting (also called real time counting) is possible to over 500 MHz if one wishes to pay a premium price.

A prescaled counter divides the input frequency by some integer, then counts the resulting frequency. If the selected division ratio is ten, to "read" the actual frequency you merely remember to move the decimal point on the readout one place. One reason for using this technique is that several lower-cost IC's will divide by ten up to 500 MHz , but not in a circuit that is easy to decode for display purposes. Fig. 8 shows a pop-

Fig. 8-Prescaling is a technique which makes it possible to measure frequencies in the VHF and UHF ranges with an instrument designed for a lower range of frequencies.

Fig. 9-Heterodyning is another method of extending the frequency range of a digital counter.
ular prescaled system.
The third method mentioned is the heterodyne system, shown in Fig. 9. In this type of counter, the input frequency is translated to a lower frequency within the range of the instrument. The "local" frequency source can be a separate crystal oscillator, but usually is a frequency multiplier chain or phase-locked-loop (PLL) controlled oscillator, either of which can be driven or synched by the time base oscillator.

If the "local" frequency source in a heterodyne counter is designed to produce frequencies as high as 400 MHz , and the basiccounter is capable of direct counting to 80 MHz , the counter will be capable of measuring frequencies in the mobile radio bands up to 480 MHz because it will actually be measuring $F_{\text {in }}$-Fiocal. Counters well into the microwave (GHz) range are possible by use of this technique.

COUNTER ERROR

All of those pretty digits displayed by a counter might tempt one to make the same error made by high school physics students working problems with a sixteen-digit calculator: forgetting that only a portion of the total display is valid. For all counters in which the main gate circuitry does not synchronize the time base with the input signal (which is just about all counters), the display accuracy is \pm the last (least significant) digit. This makes the overall accuracy equal to the time base error \pm one count of the LSD.
NEXT MONTH: Specific applications of digital counters in the service shop, and what specs are desirable for each.

Troubleshooting Horizontal Deflection \& High Voltage Circuits -Part I

THE DEFLECTION CIRCUITS

- The deflection circuits are comprised of four major stages : the horizontal output stage, the horizontal output transformer, the deflection yoke, and the damper. All four of these work together to control the horizontal deflection of the electron beam.

A simplified schematic of a typical horizontal deflection system is shown in Fig. 1. The output of the horizontal oscillator drives the grid of the horizontal output tube, which is class C biased by the grid circuit. Plate voltage for the output stage is provided by the charge across C 1 . How this charge is developed is easier understood after looking at the operation of the four stages.

With no signal applied to the grid, V1 is cut off, and no current flows in the transformer or yoke. No magnetic field will be developed without yoke current; therefore, the beam is at the center of the screen. As the output stage is brought into conduction, current flows through V1, through the transformer, through the yoke to the positive B -boost charge on C 1 , from the capacitor to the $\mathrm{B}+$ supply, and through the supply to ground. The corresponding CRT trace is shown as vector A in Fig. 1B. As the current through V1 and the yoke increases (shown as A in Fig. 1C), the beam is drawn farther to the right.

When the waveform at the grid of V1 starts going negative, V1 is suddenly cut off. This sudden stopping of V1 current causes the magnetic field about the transformer to collapse, inducing a current in the yoke in the same direction as that supplied by V1. However, instead of flowing into C 1 , the current charges the yoke capacitors. Tube V2 cannot conduct, due to the high positive potential on the cathode. When the yoke field is fully dissipated, there is no more yoke current; therefore, the beam returns rapidly to the center of the screen.

Fig. 1-Horizontal deflection circuit.

Fig. 2-Horizontal deflection circuit, showing linearity control.

As the ringing action of the yoke continues, the charge across the yoke capacitors starts to discharge through the yoke coils. This causes a reverse yoke current, and the beam is deflected to the left of the CRT, as shown by vector C in Fig. 1B. During this cycle, the cathode of

[^2]the damper is gradually becoming less positive; and when the coils of the yoke begin to discharge into the capacitors once again, the cathode is negative with respect to the plate.

As the coils discharge back into the capacitors, yoke current flows once again, moving the beam to the center of the tube. As this current increases, V2 conduction continues to increase, gradually dampening the ringing action of the yoke (shown by dotted lines in Fig. 1A). When the beam approaches the center of the tube, the waveform at the grid of V1 is sufficiently positive to cause V1 to conduct, and the cycle starts over again.

The plate supply for V 1 is the B-boost voltage across C1. Each time V2 conducts, its plate voltage drops. This AC voltage at the plate of V1 causes a charging current to flow into C1. The plate circuit sees C 1 in series with the $\mathrm{B}+$ supply and, therefore, the voltages are additive, resulting in a high DC voltage at the junction of C 1 and the yoke. Each time V1 conducts, the charge across C 1 is reduced, to be replaced each time V2 conducts.

A more complete schematic of the horizontal deflection circuits is shown in Fig. 2. Bias for V1 is developed across R1, holding V1 in cutoff until the oscillator output is sufficiently positive to cause conduction. Operation of the damper and yoke stages is the same as described earlier. Coil L1 is provided in some sets as a horizontal width control. Coil L2 is a linearity control. This control tunes the horizontal output circuit to provide minimum loading of the output stage. It is more correctly called horizontal efficiency, because it has very little control over linearity.

An example of a solid-state horizontal deflection system is shown in Fig. 3. The operation is generally the same as that of the tube-type circuits, with exception of considerations necessary for solid-state circuits. The deflection yoke coils have

Fig. 3-Solid-state horizontal circuit.
been placed in parallel in this example to reduce to total inductive load on the output transistor. In some models, a buffer or driver transformer is located between the oscillator and the output stage to prevent loading of the oscillator. To provide the relatively high power output required of this stage, two transistors operating in parallel are sometimes used. Conduction of the output transistor causes beam deflection from the center of the screen to the right, and damper current moves the beam from the left to the center, just as in the previous circuits.

There are usually several other output taps on the flyback transformer in addition to those already presented here. The high-voltage circuit takes power from some of these taps, while others are used for horizontal blanking, AGC, AFC, and color-gating signals.

THE HIGH VOLTAGE CIRCUITS

For the purposes of our discussion here, the high-voltage circuits include two separate high-voltage supplies: the second-anode supply, and the focus supply. Some sets use one common high voltage supply with a voltage divider to produce the two DC voltages, while others make use of a high B-boost voltage as the source of focusing voltage. Two separate supplies are shown in Fig. 4.

Separate windings on the flyback transformer supply filament voltage for the two rectifiers. These circuits function similar to a conventional half-wave rectifier power supply. When oscillator action causes V1 to cut off, the collapsing magnetic field in the flyback transformer induces a voltage in the transformer winding that produces a high DC voltage pulse at the plates of the rectifiers. This pulse is stepped up by the autotransformer action of the flyback. Rectification is achieved by the rectifiers, and a high DC voltage is produced at the cathodes. By means of L 1 , the impedance in the cathode

Fig. 4-High voltage supplies.
circuit of V4 can be adjusted to set the focus voltage at the prescribed level. Adjustment of the secondanode supply is usually made in the high-voltage regulator circuit, which will be discussed later.

Solid-state high-voltage diodes generally employ high-voltage solidstate rectifiers that function similar to their vacuum tube counterparts. One type of solid-state supply, shown in Fig. 5, uses a voltage tripler circuit. In this example, a highvoltage pulse is generated in the transformer and appears at the anode of X1. As X1 conducts, a charge is developed across the parallel capacitor. After several cycles, all capacitors are charged and the charges appear in series, adding to the total DC voltage available at the second anode.

In a television set, the highvoltage output of the second-anode supply will vary with the brightness of the scene. This is due to the fact that during the reproduction of high brightness areas the CRT is drawing a relatively heavy current, placing a load on the high-voltage supply. As scene brightness decreases, the load on the supply decreases, and, as a result, the high-voltage output increases. Due to the lower amount of beam current drawn by b-w receivers, this fluctuation can be tolerated. However, the heavier beam currents of the color CRT causes these variations in the high voltage to be excessive, and cause a decrease in picture width due to the loading placed on the horizontal output stage. Other circuits in the color receiver also draw DC or signal voltages from the horizontal output;

Fig. 5—Solid-state high-voltage supply.
therefore, loading of the output stage cannot be tolerated in the color set. To overcome the loading effect on the horizontal output stage, color receivers employ a regulated high-voltage supply. Basically, this supply is the same as the one just discussed except for a regulator stage placed somewhere in the highvoltage generating chain.

Regulator Stage

The shunt-type regulator has long been the most popular of the highvoltage regulators. A simplified version of this circuit is shown in Fig. 6A. Operation of this circuit is based on the premise that the output stage and flyback transformer function as a constant-current source; that is, a steady value of DC current is drawn from the transformer. The regulator tube in parallel with the load (the CRT) controls the amount of current shunted around the load, thereby regulating the voltage across the load.

In the figure, a high-voltage triode is tied between the high-voltage supply and $\mathrm{B}+$. The grid is connected to the B-boost source through a voltage divider, one resistor being adjustable to furnish a high-voltage adjustment. The function of the triode is to furnish a variable load across the high-voltage output, in parallel with the CRT. As the load of the CRT decreases, the load furnished by the regulator tube increases and, as the CRT load increases, the load furnished by the regulator decreases. Thus, a constant load is reflected to the power supply.

Assume that the scene brightness suddenly increases, causing beam current to increase. This causes a heavier load to be placed on the flyback, and the voltage output starts to decrease. The heavier load will also cause a decrease in the boost voltage. As boost voltage decreases,

Fig. 6—Shunt-type high-voltage regulators. A) Without holddown provision. B) With holddown provision.
the bias on the regulator tube is increased (made less positive), causing the tube conduction to decrease. Conduction of the regulator tube decreases until a point is reached where the high voltage is returned to normal. Boost voltage will again be at its normal level.

If the scene brightness should decrease, the high voltage will attempt to increase due to the decrease in beam current. The decrease in load also causes an increase in boost voltage. This positive-going voltage causes the regulator tube to increase conduction, restoring the normal load on the transformer, and the high voltage and boosted $\mathrm{B}+$ return to normal.

It must be remembered that this type of regulator circuit is designed to function within certain specified limits. Should the current in the load vary to a point outside these limits, as would be caused by opens in the load or a low resistance to ground, the regulator tube will not be able to control the high voltage. In cases of excessive high voltage, as could be caused by a failure of the regulator tube itself, there is the danger of X-radiation. Therefore, some modern shunt regulators use the modified circuit shown in Fig. 6.

Improved Regulator Circuit

In this example, a diode is placed between the $B+$ supply of the regulator and the cathode of the regula-

Fig. 7-A puise-type high voltage regulator.
tor tube. The B+ for the output stage is also drawn from this same diode. In this circuit $\mathrm{B}+$ will be available to bias the output tube into conduction only if the regulator tube is conducting. If the regulator fails, no current flows through the diode, and the bias on the grid of the output tube is lowered due to the absence of the B+ voltage. There will still be a high-voltage output, but it will be below normal.

One disadvantage of this circuit is that if the high-voltage regulator tube shorts-a common occurrence -the diode will probably short also. When the regulator tube is replaced to restore normal operation, all will appear well, even though the diode is shorted. However, the safety feature will now be inoperative because B+ will be available to the output stage at all times, regardless of the conduction of the regulator. When regulator tubes are replaced in this type of circuit, always check the diode for shorts.

Another disadvantage of this type of regulator is the amount of power wasted. Since operation of the shunt regulator is based on the fact that the flyback must supply a constant current, power dissipated by the regulator tube during periods of low brightness is wasted. This results in the transformer supplying a full load current at all times.

A better method would be one in which the transformer supplied only the amount of current required in any one instance. Such a circuit is shown in simplified form in Fig. 7. This circuit is called a pulse regulator, due to the fact that it functions on pulses from the flyback transformer. Control grid, screen grid, and plate voltages for the regulator tube are all received in the form of

Fig. 8-Diode feedback high-voltage regulator.
positive pulses during the retrace time. If the brightness of the scene decreases, the high voltage attempts to increase. At the same time, the amplitude of the pulses at the various transformer taps also tries to increase. This increase in the positive pulses applied to the pulse regulator tube causes the tube conduction to increase and load the transformer, decreasing the transformer efficiency and current. If the high voltage decreases, so do the pulses to the regulator. The regulator conducts less, causing less loading of the flyback and an increase in efficiency. As in the shunt regulator, a protection diode is included in the cathode circuit.

Feedback Regulator

An even more efficient method of regulating the high voltage would be to regulate the current available to the transformer. Regulators using this principle employ a feedback system similar to automatic gain control. An example of the feedback regulator is shown in Fig. 8. This circuit is sometimes called a grid regulator, but its use with solid-state circuits as well as tube circuits makes the name feedback regulator more appropriate.

Normal operating bias for the tube is supplied by a grid leak circuit and the voltage divider between $\mathrm{B}+$ and ground. As the high voltage tends to increase, the amplitude of the pulse applied across the diode also tends to increase. This pulse is rectified by the diode, and the filter action of C2 causes a charge to be developed across C2. With an increasing pulse, the negative voltage applied to grid resistor R1 increases, causing the tube to decrease conduction, and, consequently, the high voltage is lowered.

[^3]
ET/D 1974 SUBJECT REFERENCE INDEX

The first numerical group following

 each listing indicates the month of the issue in which it appeared, and the second numerical group indicates the page on which coverage of the topic appears or begins. The two-letter alphabetical code in parenthesis immediately following some listings indicates coverage in one of the following ET/D regular departments: COLORFAX (CF), Dealer Showcase (DS), New Products (NP), TEKLAB (TL), Technical Digest (TD), Test Instrument
Report (TR)

ANTENNAS (Including Systems \& Accessories

Antenna, Jerrold Electronics Corp., Model TOTE-5K
Antenna, JFD Electronics Corp., Model LPV-UC
Antenna Matching Harness, Jerrold Model USL-U
Antenna System Directional Coupler Taps, Jerrold Electronics, DFT/Series
Antenna, The Finney Co
Antennas, Antenna Specialists Co., Models ASP-816/817
Antennas, Channel Master Quantum Series
Attenuation or Loss
Balancing Channels in MATV Systems
CATV Drop Cable, Belden Corp.
CATV Midband Trap, Blonder-Tongue Model MWT-4
Coax or Twin Lead-Making the Choice
Coax Types
Distribution Amplifier, Antennacraft Model UVF-1520
Dlstribution Amplifier, Jerrold Model CDA-300
Distribution Amplifier, Winegard Co., Model DA-215
Distribution Amplifier, Winegard Co., Model DA-825B
Fault Finding In MATV Systems
Fields Interference and Durability
FM Antenna, Blonder-Tongue Stereo-Eight
FM Interference Trap, Jerrold Electronics Model RFT-300
Home Antenna/Cable TV Switch, ACA Model CM10

Impedance

Interpreting MATV Amplifier Specs
Matching Transformer, Jerrold Model T-3789
MATV CATV Attenuator, RCA Model WM-542A
MATV Distribution Amplifier, ACA '"Mini-Mite"
MATV Head Ends, Jerrold Electronics
MATV Tapoff, Blonder-Tongue Model V-4897
MATV Taps-Selection and Use
Mobile Antenna, Antenna Specialists Co., Model ASP-800
Mobile CB Antenna, The Antenna Specialists Co., Super Scan II
Selling TV Antennas to CATV Subscribers
Three-Way Splitter, AEL Communications Model MSB3
Travel Antenna, ACA Model AC800K
TV Interference-Causes and Cures
Twin Lead Types
Two-Way VHF/UHF Splitter, RMS Electronics Model HS-20U/MM UHF Antenna, Antenna Specialists Co., Models ASP-820/821/822 UHF Bandpass Filters, Jerrold Model UBPF-14 thru UBPF-70 UHF Preamplifiers, Blonder-Tongue Model SCMA-U UHF/VHF/FM Antenna, RCA Model 4BG48
VHF Cable Loss Equalizer, Q-Bit Corp., Model 4200
VHF/FM Antenna Preamplifier, Winegard $\mathrm{Co}^{\text {. }}$ Model RD-375

AUDIO

Audio Adapters, Switchcraft 301Q "A-G"
(DS) $2 / 53$
(NP) $6 / 50$
(NP) $4 / 64$
(NP) $12 / 45$
(NP) $1 / 49$
(NP) $10 / 48$
(NP) $12 / 48$
4/33
$10 / 32$
(NP) $8 / 44$
(NP) $8 / 44$
$3 / 20$
$4 / 32$
$4 / 32$
$4 / 35$
$4 / 35$
$7 / 49$
(NP) $3 / 46$
(NP) $8 / 43$
(NP) $1 / 50$
4/36
$4 / 32$
(NP) $8 / 45$
(NP) $7 / 49$
(NP) $11 / 45$
4/32
9/38
(NP) $5 / 50$
(NP) $8 / 43$
(NP) $10 / 48$
(NP) $8 / 46$
(DS) $9 / 52$
7/22
(NP) $9 / 50$
(NP) $6 / 51$
4/50
(NP) $4 / 65$
(DS) $5 / 57$
3/27
$4 / 35$
(NP) $3 / 46$
(DS) $9 / 55$
(NP) $1 / 49$
(NP) $6 / 52$
(NP) $11 / 44$
(DS) $9 / 58$
(NP) $2 / 48$
(NP) $8 / 42$

Audio/Video Tape Logger, GYYR Products, Odetics, Inc Model TL350
Car Stereo, Aiko America Corp., Model ACS-217
(DS) $1 / 54$
Cassette Recorder, Channel Master, Model 317
(DS) $1 / 54$
(DS) $1 / 56$
(DS) $5 / 56$
(DS) $1 / 55$
(DS) $12 / 48$
(NP) $2 / 50$
(DS) $8 / 51$
(DS) $9 / 55$
7/38
(TD) $5 / 48$
(DS) $5 / 58$
(DS) $6 / 56$
(DS) $10 / 56$
(NP) $8 / 47$
(DS) $10 / 53$
(DS) $6 / 56$
(DS) $12 / 48$

- $9 / 52$
(NP) $7 / 49$
(TD) $8 / 10$
(TD) $10 / 14$
(DS) $12 / 48$
(DS) $12 / 48$
(DS) $11 / 43$
(DS) $5 / 56$
(DS) $11 / 46$
(DS) $10 / 54$
(NP) $1 / 49$
(TR) $1 / 41$
(DS) $6 / 57$
8/34
6/30
(DS) $8 / 49$
(NP) $3 / 48$
(DS) $9 / 52$
(DS) $6 / 59$
(NP) $2 / 48$
9/32
7/47
(DS) $1 / 56$
6/24
(DS) $2 / 52$
(DS) $8 / 49$
(DS) $12 / 47$
(DS) $2 / 52$
(DS) $9 / 57$
$1 / 23$
(DS) $2 / 52$
(DS) $4 / 66$
(DS) $7 / 50$
(DS) $2 / 52$
(NP) $1 / 20$
(DS) $3 / 50$
(DS) $5 / 56$
(DS) $10 / 56$
(DS) $7 / 50$
(DS) $11 / 47$
(DS) $6 / 56$
(DS) $11 / 46$
(DS) $8 / 50$
(DS) $3 / 50$
(NP) $7 / 48$ (DS) $10 / 54$ (DS) $1 / 54$ (DS) $4 / 66$
(DS) $\quad 4 / 66$
(DS) $1 / 56$
(D) $1 / 56$
(DS) $4 / 67$
(DS) $1 / 55$
(NP) $9 / 50$
(NP) $6 / 51$
(DS) $5 / 57$
(DS) $10 / 55$

business management

Does Servicing Have a Future?

Gettin Advertising for the Service Dealer
Going to Remodel the Store? Here's a Good Check List
$8 / 26$
$1 / 30$
a Good Check List $\quad 2 / 30$
Man 1/42

Managing to Learn and Learning to Manage
Managing to Learn and Learning to Manage
Profitable and Competitive Pricing of Service Labor
Replacement Color Picture Tubes
Replacement Color Picture Tubes-Propping up $\quad 12 / 12$
Retirement Programs for Owner/Employees up Servicers' Profits

B-W TV

B/W TV Power Sentry System, Zenith Radio Corp.
Circuit-Board Modifications, General Electric Chassis SF
(DS) $9 / 53$
Console Cabinets-Lid Supports, Admiral
(ID) $1 / 48$
Fuse and Resistor Modification, Zenith TV Chassis 12CB127X/
16DB12X
(TD) $2 / 47$
(TD) $2 / 47$

General Electric Video Display Chassis MUA Chassis Description How and Why-Trapezoidal
No Vertical Sweep, Admiral TV Chassis TK3
Picture Tube Mounting Ring Removal, Philco-Ford 19 -inch Models
Picture Tube Repairs
Product Safety Maintenance, Admiral
Service Check of Filament Diode Rectifier 34-8054-23
Philco-Ford Monochrome TV Chassis
Servicing Solid-State AGC Circuits
Solid State Tubes, EDI
Symptoms Caused by Shorted IC301, General Electric Chassis SF Troubleshooting Solid-State Multivibrators
UHF Tuner, General Electric Chassis U1/UA
Vertical Stretch and/or Double Picture, MGA TV Models
BT-120/BT-121/BT-122

COLOR-TV

Admiral Chassis M25
Audio Output Module, Magnavox 612046-202
Board and Module Modifications, Magnavox Chassis T979/989
Brightness and Contrast Control Adjustment, Admiral Chassis M10
Buzz or Hum at Low Setting of Volume Control, Philco-Ford Chassis 22QT80, $21 \mathrm{KT} 40 / 41$
Cleaning Precautions, Magnavox 21 Detent Tuner
Components Kit, RCA No. 199006
Components Chassis T989
Dressing of Focus Capacitor, Zenith Chassis 19DC12/22/28
Eight-Function Remote Control, Magnavox Chassis 1989
Excessive Contrast, Magnavox Chassis T989
Failure of Resistor R742, Magnavox Chassis T924/939/950
GTE Sylvania TV Chassis E06
GTE Sylvania TV Chassis E06-2, Part 2
High-Voltage Repair Kit, Tele Matic Model HVk630
High-Voltage "Ticking/Sizzling" Sounds, General Electric Chassis "C"
Hookup to Test Fixtures, Magnavox Chassis 1989
Horizontal Bending or Pulling in Picture, Admiral Chassis K18, K19 Series
Horizontal Deflection Tube, RCA Triple-Boarded 6MJ6/6LQ6/QJE6C
Horizontal Weaving, MGA Model T50
How and Why Trapezoidal
Hum at Low Volume Level, Magnavox Chassis 1989
Hum Bar in Picture at 60 Hz Rate, Admiral Chassis k 19 Series
Hum Bar, Magnavox Chassis T948
Intermittent Brightness Variation, Magnavox Chassis T989
Intermittent or No Video and No Sound with White Raster,
Admiral Chassis T14K10/T41K10 Series
Loss of Sound, Admiral Models 5L5851, 5L5853, 5L5855
Magnavox, TV Chassis T982. Part 1
Magnavox, TV Chassis T982, Part II
Medium Level Snow on UHF Channels Using VVC Tuner, Philco-Ford Chassis 4C572/4CY91
Modification for CATV Systems, MGA Chassis T50
Modification for CATV Systems, MGA Chassis T50 Series
Modifications, Magnavox Chassis CE
Module Cross-Reference Guide, Zenith
Module Removal, Magnavox Color TC Chassis T995
New in Color TV for 1975-Part I
New in Color TV for 1975-Part II
New in Color TV for 1975-Part III
New in Color TV for 1975-Part IV
No Color, Admiral Chassis K10
Noise Immunity Circuits, Motorola TV Color/Video Panel LA/MA/WA
Panasonic Model CT-944
Picture Tube/Deflection Yoke Replacement, Admiral Chassis M10 Picture Tube Repairs
Power Supply Diode Failures, Magnavox Color TV Chassis
T981/T982/T987
Power Supply Module M900 (A8926-1), Admiral Chassis M25
Quick-On Wiring, Magnavox Chassis T995
Remote Control UHF AGC Improved, Magnavox Chassis T989
Replacement Color Picture Tubes--Propping Up Servicer's Profile Replacement Picture Tube, RCA "Colorama A"
Ringing Bars on Left Side of Picture, Magnavox Chassis T989
Sense and Nonsense Color TV "Case History" Faults
Vector Diagram
Service Hint, Admiral Chassis 3K19
Servicing Solid State AGC Circuits
Solid-State Tubes, EDI
Solving Sync Problems in Solid-State TV
Sony's Wide-Angle Trinitron Color TV
Sound Problems, MGA Models CH160, CH190, CH191
Test Rig, Tele Matic Model CJ
The Making of a Color TV Picture Tube
Thin Vertical Line Near Left Edge of Screen, Motorola TV Chassis, TS-934
Troubleshooting Solid-State Multivibrators
Troubleshooting the Power Supply Magnavox TV Chassis T 989 TV High-Voltage Tripler, Motorola HEP R3201
Vector Diagrams, General Electric
Vertical Black Line at Top and at Bottom of the Screen, Magnavox Vertical Line on Left Side of Raster, Magnavox Chassis T979
Vertical Oscillator/Drive Module 703616-1, Magnavox
Vertical-Output Transistors, Admiral Chassis, M24/M25/M30
Vertical Problem and Yoke Capacitor C16, Magnavox "D" Panel 703505-1
Vertical Shaded Lines, General Electric Chassis HE
Vertical Shading Bars, Magnavox Chassis T995
Voltage Sensor Circuit, Zenith Chassis 25DC57
(TD) $3 / 44$ 2/27
(TD) $2 / 47$
(TD) $9 / 14$
5/33
(TD) $7 / 46$
(TD) $10 / 14$
11/24
(NP) $5 / 54$
(TD) $4 / 58$ $12 / 28$
(TD) $4 / 58$
(TD) $1 / 48$
(TL) $4 / 27$
(CF) $5 / 47$
(CF) $2 / 44$
(TD) $11 / 6$
(TD) $10 / 14$
(CF) $4 / 57$
(NP) $10 / 48$
(TD) $8 / 10$
(CF) $2 / 45$
(CF) $6 / 47$
(CF) $6 / 47$
CF) $2 / 44$
(CF) $2 / 44$
(TL) $5 / 23$
(TL) $6 / 18$
(NP) $2 / 51$
(TD) $12 / 40$
(TD) $11 / 9$
(CF) $5 / 46$
(TD) $8 / 10$
(CF) $2 / 43$
2/27
(CF) $4 / 57$
(CF) $8 / 38$
(CF) $5 / 47$
(CF) $4 / 57$
(CF) $5 / 46$
(CF) $8 / 38$
(TL) $2 / 23$
(TL) $3 / 23$
(TD) $11 / 8$
(CF) $2 / 43$
(CF) $1 / 46$
(TD) $8 / 10$
(CF) $2 / 46$
(TD) $12 / 41$
9/16
10/24
11/28
12/20
(TD) $12 / 40$
(CF) $4 / 57$
(DS) $3 / 50$
(TD) $10 / 2$
5/33
(TD) $12 / 40$
(CF) $8 / 39$
(TD) $10 / 12$
(TD) $10 / 12$
$7 / 47$
$8 / 24$
(DS) $9 / 56$
(CF) $2 / 44$
(CF) $1 / 44$
(TD) $7 / 46$
$11 / 24$
(NP) $5 / 54$
$12 / 25$
(TL) $8 / 14$
(CF) $8 / 40$
(NP) $3 / 47$
4/46
(TD) $7 / 47$
12 /28
(CF) $3 / 43$
(NP) $2 / 18$
(CF) $1 / 44$
(TD) $11 / 9$
(CF) $8 / 39$
(CF) $2 / 45$
(TD) $9 / 14$
(CF) $5 / 46$
(CF) $1 / 45$
(D) $10 / 12$
(CF) $1 / 46$

M Transceiver, Genave Model GTX-100
(DS) $4 / 67$
$2 / 31$
$4 / 66$
(DS) $4 / 66$
(DS) $12 / 46$
Transceiver, Com Data Model HT-910
VHF High Band Monitor/Receiver, Channel Master Model 6258

COMMUNICATIONS
 CB

CB Mobile Radio, E.F. Johnson Model 130
(DS) $4 / 66$
2/34

Servicing Two-Way Radio

SSB/AM CB Two-Way Radio, Tram Corp. Diamond 60
SSB/CW Transceiver, Hallicrafter Model FPM-300 Mark II
The Expansion of Citizens Band
Transceiver, Fanon/Coupier Corp., Rebel 234
Two-Way CB Receiver, Dynascan Model CAM-89
(DS) $9 / 43$ $12 / 34$
(DS) $1 / 56$
(DS) $12 / 49$

MERCHANDISING

Antenna Display, RCA Model MU-1937
(DS) $10 / 53$
Car Stereo Display, Channel Master Car Stereo-Center(DS) 9/56
Car Stereo Display RCA Model MDS-1305 .. $1 / 55$
CB Parts/Accessories Program, GC Electronics No. 49-810(DS) $12 / 46$
Consumer Products Displays, Channel Master (DS) $12 / 48$
Digital Clock, General Electric Co.
Display Advertisements, General Electric
Effective Advertising for the Service Dealer
Electric Sign, BSR
Electronic Products, Mallory "Desert Deal"
Electronic Security Systems-A Natural for Electronic Servicers
MATV System Display, Jerrold Electronics
Monitor Receiver, Electrosonic Electro-Monitor
Needle and Cartridge Display, Pageant/MA Miller
Needle Merchandiser, EV-Game "Needle Finder"
Selling TV Antennas to CATV Subscribers
Stereo Speaker Merchandiser, Innovative Audio Systems
"Speaker Tree"'
Stereophone Display, RCA Model MDA-1222
System Offers Three Ways to Build Receiver Sales
Telephone Answerer Display, BSR Phone Butler
TV Antenna Display, RCA Model MLU-1606

RADIO

AM/FM Receiver, Superscope, Inc
AM/FM Weather Band Radio, Panasonic Model RC. 6304
Coils and Transformers-A Perspective for Technicians
Dial Cord Guide Replacement, RCA Tuner/Amplifier Models VZT100/VST113
(DS) $12 / 47$
(DS) $7 / 50$
8/26
(DS) $9 / 54$
(DS) $9 / 55$
. $10 / 36$
(DS) $12 / 46$
(DS) $9 / 53$
(DS) $12 / 48$
(DS) $12 / 48$
(DS) $10 / 54$
DS) $3 / 50$
$1 / 23$
(DS) $9 / 57$
(DS) $6 / 57$
(DS) $1 / 54$
(DS) $10 / 53$
$11 / 16$
(TD) $3 / 44$
(DS) $5 / 58$
(NN) $1 / 20$
(DS) $4 / 66$
(DS) $11 / 47$
(DS) $7 / 50$
(DS) $6 / 59$
(DS) $2 / 52$
(TD) $7 / 46$

OFFICE EQUIPMENT

Digital Clock/Calculator, RCA Model 3C3030 2/49
Electronic Calculator, Texas Instruments Model TI-2550 (NP) 3/48
Phone Answering System, Channel Master Model 6000 (DS) 10/56
Telephone Answerer, Phone-Mate, Inc., Model 300
Telephone Answering/Recorder System, Ford Industries
Memory Phone
(DS) $1 / 55$

Telephone Silencer, Diversitron Inc.
(NP) 8/45

SECURITY \& SURVEILLANCE SYSTEMS

Alarm Installers' Tool Kit, Mountain West Alarm Model MW. 700
Alarm System, PLC Electronics Inc. Model 740
Electronics in Modern Hospitals-A Varied and Vital Role
Electronic Security Systems-A Natural for Electronic Servicers
Electronic Watchman, Dytron inc. "The Care Taker"
Home Alarm Sets, Master Lock Co. "Snap On"
Motion Detection System, Mountain West Alarm Model M4
Superior Baby Foods
SEMICONDUCTORS (General)

t Gain
tors, What Every Good Technician Should Know

Bipolar Transistors, What Every Good Technician Should Know $\quad 6 / 42$
6/42
Conventional Bipolar Power Transistors 7/18
Darlington Power Transistors ... 7/17
Discrete Semiconductor Devices .. $\begin{aligned} & 3 / 30 \\ & 8 / 28\end{aligned}$

High-Voltage Regulators ... 9/30
High-Voltage Triplers .. $9 / 31$
Integrated Circuits
Integrated Circuits and Modules, GTE Sylvania ECG 1000 Series (NP) 10/50 6/45

LASCR
LED's
$1 / 36$
$1 / 31$
Low-Voltage Power Supplies .. $9 / 28$

Output Capacitance ... 6/45
Photoconductive Cell ... 1/33

Photo Coupler
$1 / 34$
Photodiode

Photoemissive Cell
1/33
Photo FET
Phototransistor
Photovoltaic Cell
Power Dissipation
Rectifier Replacement
Rectifier Theory
Reverse Breakdown Voltage
Semiconductor Diode Theory, Testing and Replacement
SCR's and Power Transistors
Testing and Replacement of Discrete Semiconductor
IC's and Modules
The Dual-Gate JFET
The MOSFET
The SCR
Transistors, International Rectifier Corp.
Transistors, IRC Kit DK20
Troubleshooting SCR Circuits
Troubleshooting Solid-State Power Supplies
Varactor Tests
Varactor Theory
Zener Diode Tests and Replacement Selection
Zener Diode Theory

SERVICE AIDS

A Realistic Approach to TV Tuner Trouble
Capacitor Mount Adapters, Sprague Products Inc., Type PC-8
Chemical Cleaner, CRC Chemicals Lectra Clean
Cleaning Aerosol, Falcon
Contact Cleaner, CRC Chemicals Inc
Contact Cleaner, 3M Co., No. 1613
Electronic Chemicals, Workman
High-Voltage Repair Kit, TeleMatic Model HVK630
Omni-Direction Tuner Spray Nozzle, Tech Spray "Omni-Spra"
Service Chemical Cole-Flex Corp. CD-250
Solder, GC Electronics No. 9132
Tuner Cleaning Pads, PTS Electronics Inc.
Tuner Lubricant/Cleaner, PTS Electronics, Inc., No. 108
TV Tuner Cleaner/Lubricating Kit, General Electric

SHOP EQUIPMENT

Alarm Installers' Tool Kit, Mountain West Alarm Model MW-700 Bench Power Supply, Central Components Co., Model C621 Burnishing Tool, Utica Tool Co. Inc.
Cable Sheath Stripper, P.K. Neuses, Model N-2878
Cable Stripper, ITT Holub Industries "Roto-Blade"
Cordless Soldering Iron, Weller
Desoldering Kit, Enterprise Development Corp., Model 500K Desoldering Tips, Enterprise Development Corp.
Desoldering Tool, Edsyn No. DSO17
Desoldering Toot, Solder Removal Co.
Drill Bit, Unibit Corp., Model II
Electrical Plug Lock, Mercury Manufacturing
Hand Tools, ITT Holub Industries
Head Demagnetizer, Nortronics Co., Model QM-202
Inverter, EPS Co., Model TI-250B
Metric Hex Key Set, Vaco No. 70156
Metric Hex Socket Screwdriver, Xcelite No. LN-8MM
Metric Nutdriver Set, Xcelite Model PS-121Mm
Mobile Shelf Carrier, SGL Waber Electric Model Low
Parts Case, General Electric ETRS-5980
Parts Chest, AMP Special Industries
Parts Rack, RCA Model QT
Parts/Storage Bins, Kole
Relay Service Tool Kit, P.K. Neuses, Inc., Model TK-18
Screwdriver Sets, Xcelite Model 99-PS41MMBP
Self-Adjusting Wire Stripper, ITT Holub No. 18-10
Self-Adjusting Wrench, Brookstone Co.
Service Table, RCA Model 101107
Socket Wrench, P.K. Neuses, Inc., Model N-311
Solder, GC Electronics No. 9132
Soldering Iron Accessory, Edsyn, Inc., No. HA120
Soldering Iron Holder, Wolo Manufacturing Corp.
Soldering Iron Tip Cleaner, Solder Removal Co., "Re-Tip""
Soldering Iron, Ungar No. 555
Soldering Iron, Wahl Model 7500
Soldering Iron, Wall-Lenk Manufacturing Co.
Temperature Probe, Edsyn, Inc., Part No. TP110
Test Rig High-Voltage Meter, TeleMatic Model HVM 3900
Test Rig, TeleMatic Model CJ
Tool Case, Howe Industries
TV Test Rig, Telematic, Model MJ-195
Voltage Regulator, Air-Vac Engineering Co.
Wire Unwrap Tool, O.K. Machine and Tool Corp., Model UW 2832 C Wiring Tool and Crimper, Vaco Products Co., Wireplier

TELEVISION (General)

A Realistic Approach to TV Tuner Troubles
Coax On Twin Lead-Making the Choice
Coils and Transformers-A Perspective for Technicians
Fault Finding In MATV Systems
Flameproof Film Resistors RCA
Flip-Flops (Bi-Stable Multivibrator) Sylvania
FM Interference
Ghosts and Smears
How and Why-Trapezoidal
How to Tackle a Real Dog
1/35
1/35
1/33
6/43
6/43
$5 / 30$
6/43
5/28
7/14
3/30

$8 / 31$

8/31
7/14
$10 / 49$
(NP) $8 / 42$
$7 / 14$ /28 9/28 5/29 5/28 5/30 5/29
$10 / 20$
(NP) $6 / 52$
(NP) $10 / 48$
(NP) $2 / 51$
(NP) $6 / 49$
(NP) $8 / 43$
(NP) $2 / 49$
(NP) $2 / 51$
(NP) $2 / 51$
(NP) $12 / 42$
(NP) $4 / 63$
(NP) $5 / 51$
(NP) $6 / 52$
(NP) $12 / 46$
(NP) $12 / 42$
(NP) $3 / 46$
(NP) $1 / 53$
(NP) $7 / 48$
(NP) $5 / 54$

(NP) $10 / 49$

(NP) $11 / 43$
(NP) $2 / 50$
(NP) $12 / 42$
(NP) $2 / 48$
(NP) $1 / 49$
(NP) $10 / 50$
(DS) $5 / 58$
(NP) $3 / 48$
(NP) $10 / 52$
(NP) $8 / 43$
(NP) $4 / 62$
(NP) $5 / 52$
(NN) $3 / 20$
(NP) $5 / 54$
(NP) $8 / 42$
(NP) $6 / 53$
(DS) $8 / 49$
(NP) $9 / 51$
(NP) $4 / 63$
(NP) 4/60
(NP) 5/50
(NN) $2 / 8$
(NP) $1 / 49$
(NP) $2 / 50$
(NP) $5 / 51$
(NP) $4 / 64$
(NP) $9 / 50$
(NP) $6 / 49$
(NP) $11 / 45$
(NP) $4 / 60$
(NP) $3 / 47$
(NP) $3 / 48$
(NP) $12 / 43$
(NP) $3 / 47$
(NP) $1 / 52$
(NP) $10 / 50$
(NP) $7 / 48$
(NP) $1 / 49$
(NP) $5 / 55$

10/20
$4 / 32$
11/16
$4 / 36$
(NP) $12 / 42$
(TD) $5 / 48$
$3 / 28$
$3 / 29$
2/27
2/33

Ignition or Powerline Interference
Picture Tube Repairs
Product Safety Maintenance, Admiral
Servicing Solid-State AGC Circuits
5/33

Servicing solid-state AGC Circuits
venty Detent UHF Tuner Selector Knobs, Admiral Current
TV Models
"Snowy" Picture
Sockets, Zenith Kit No. 39
Solid-State Tubes, EDI
Solving Sync Problems in Solid-State TV
Strong Local Channel Interferes with Distant Channel
Troubleshooting Solid-State Multivibrators
TV Interference--Causes and Cures
TV Remote Control, Jerrold Electronics Model TRC-12

TEST INSTRUMENTS

AC Leakage Tester, RCA Model WT-540A
Amplifier Checker, Sencore Model TC28
Audio Sweep/Function Generator, Wavetek Model 30
B \& K Precision Model 1431 Oscilloscope
Circuit Tester, Western Technical Products Safetone Tracer
Color Bar Generator, Hickok Model 239
Communications Counter, Anadex Model CF-710
Continuity Checker, Thomas \& Betts E-Z-Coder Tone Tracer
Digital Multimeter, Ballantine Laboratories Model 3/24
Digital Multimeter, B \& K Precision Model 282
Digital Multimeter, Data Technology Corp., Model 20
Digital Multimeter, Data Technology Corp., Model 41
Digital Multimeter, Data Technology Corp., Model 45
Digital Multimeter, California Instruments Model DMM-51
Digital Multimeter, Digitec's Model 2110
Digital Multimeter, Digitec Model 2210
Digital Multimeter, Keithley Model 168
Digital Multimeter, MITS, Inc., Model DVM
Digital VOM, Dana Laboratories, Inc.
Digital VOM, Simpson Electric Co., Model 460-2
Digital VOM, Simpson Model 360
Distortion Analyzer, Tucker Electronics Co. Model 510A
Dual-Channel, Triggered-Sweep Scope, Hewlett-Packard
Model 1220A
FET/Transistor Tester, Heathkit Model IT-121
Field-Strength, Ascom Electronic Products Model ASM-105
Field-Strength Meter, Sadelco Inc., Model FS3B VHF/UHF
FM Alignment Generator, Sound Technology Model 1000A
FM Deviation Meter, Radio Specialty Mfg. Co., Model 1163-63-1
Frequency Counter, Heathkit Model 1B-1103
Frequency Counter, Hewlett Packard Model 5381A
Frequency Counter, John Fluke Mfg. Co., Inc. Model 1980A Frequency Counter, Scarpa Model SC-1A
Frequency Counter, Systron-Donner Corp., Model 6252
Frequency Counter/Timer, Simpson Electric Co., Model 7016
Function Generator, Datapulse Model 400
Function Generator, Krohn-Hite Corp., Model 5200
High-Voltage Probe, Triplett Model 79-70
High-Voltage Test Probe, Pomona Electronics Model 4000
Intermodulation Distortion Analyzer, Crown Model IMA
Multi Function Counter, John Fluke Mfg. Co., Model 1900A
Multitester, Weltron Co., Model 51-150
Oscilloscope, Jermyn Scopex 4D-10
Oscilloscope, Lectrotech Inc., Model T0-55
Oscilloscope Probe, Valor Enterprise, Inc.
Oscilloscope/Quicktracer, RCA Model WO-33B
Oscilloscope, Scopes Unlimited Inc.
Oscilloscope, Sencore Inc., Model PS29
Oscilloscope, Simpson Electric Co., Model 459
Oscilloscope, Systems Electronic, Inc., Model 77
Oscilloscope, Systems Model 57
Picture Tube Tester, Sencore Inc., "Big Mack"
Portable Tester, Lisson Electronics Model SCELB1
Power Meter, Gold Line Model GLC 1087
Recorder Test Set, 3M Model 6500
Resistor Substitution Unit, Phipps 0. Bird Model 236-A
RF Signal Generator, Dynascan Corp., Model 2050
RF Wattmeter, Bird Model 4371
Scope, Leader Instruments Model LBO-511
Scope, Simpson Electric Co., Model 455
Semiconductor Curve Tracer, Heathkit Model IT-1121 Semiconductor Tester, Krystal Kits, Jinni-1
Signal Conditioner, Sound Technology, Model 1100A
Signa! Generator, Exact Electronics Model 123 VCF
Substitute Tuner, TeleMatic Model KT730
Sweep/Function Generator, Exact Electronics Model 195
TeleMatic Tuner-Mate Substi-Tuner, TeleMatic Model KT730
Test Rig High-Voltage Meter, TeleMatic Model HVM3900
Transistor/FET Tester, RCA Model WT-524A
Transistor/FET Tester, Sencore, Inc., Model TF26
Tuner Subber, Castle TV Mark IV
Universal Color Bar Pattern Generator, Leader Model LCG-395 VHF Test Meter, Ascom Electronic Products, Model ASMR-100 VHF/UHF Portable TV Tuners, PTS Electronics Model 3001 VOM, Mura Model FET-300
VOM, Simpson Electric Co., Model 265
VOM, Triplett Corp., Model 310
VOM, Triplett Corp., Model 615

VEHICLES

Commercial Vehicle, Champion Home Builders
Truck Interior Shelf/Bin Units, Handi Van Kole Enterprises

NP) $5 / 50$
(NP) $9 / 49$
(NP) $6 / 53$
(NP) $4 / 52$
(NP) $9 / 49$
(TR) $2 / 36$
(NP) $12 / 45$
(NP) $10 / 48$
(NP) $10 / 48$
(TR) $6 / 38$
(TR) $3 / 42$
(NP) $9 / 48$
(NP) $4 / 64$
(NP) $6 / 49$
$\begin{array}{ll}\text { (NP) } & 6 / 49 \\ \text { (NP) } 9 / 51\end{array}$
(NP) $9 / 51$
(NP) $5 / 51$
(NP) $2 / 50$
(NP) $2 / 18$
(NP) $5 / 50$
(NP) $3 / 46$
(NP) $6 / 54$
(TR) $9 / 44$
(TR) $10 / 40$
(NP) $10 / 51$
(NP) $10 / 52$
1/23
(NP) $11 / 43$
(NP) $4 / 64$
(TR) $12 / 38$
(NP) $1 / 51$
(NP) $2 / 50$
(NP) $2 / 50$
(NP) $12 / 42$
(NP) $2 / 48$
(NP) $3 / 49$
(TR) $12 / 39$
(NP) $5 / 53$
(NP) $1 / 20$
(NP) $10 / 50$
(NP) $4 / 62$
(NP) $6 / 52$
(NP) $6 / 50$
(NP) $7 / 48$
(TR) $11 / 38$
(NP) $8 / 44$
(NP) $10 / 52$
(NP) $9 / 48$
(NP) $8 / 45$
(NP) $8 / 45$
(NP) $5 / 52$
(NP) $5 / 52$
(NP) $2 / 51$
(NP) $8 / 44$
(NP) $12 / 45$
(TR) $1 / 41$
(NP) $10 / 49$
(NP) $12 / 42$
(NP) $4 / 61$
(NP) $4 / 61$
(NP) $2 / 48$
(NP) $1 / 50$
(NP) $6 / 54$
(NP) $9 / 50$
$1 / 23$
(NP) $1 / 52$
(NP) $5 / 50$
(NP) $5 / 50$
(NP) $8 / 47$
(NP) $8 / 47$
(TR) $5 / 40$
(TR) $5 / 40$
(NP) $12 / 43$
(NP) $12 / 43$
(NP) $10 / 52$
(NP) $3 / 49$
(NP) $3 / 49$
(TR) $7 / 30$
(NP) $10 / 52$
(NP) $3 / 20$
(NP) $3 / 20$
(NP) $8 / 42$
(NP) $8 / 42$
(NP) $9 / 51$
(NP) 8/47
(NP) $2 / 50$

ARTICLE INDEX

ABC'S OF OPTOELECTRONICS
1/31
A REALISTIC APPROACH TO TV TUNER TROUBLES balancing channels in matv systems
COAX OR TWIN LEAD-MAKING THE CHOICE
COILS AND TRANSFORMERS-A PERSPECTIVE FOR TECHNICIANS dOES SERVICING HAVE A FUTURE?
EFFECTIVE ADVERTISING FOR THE SERVICE DEALER
ELECTRONICS IN MODERN HOSPITALS-A VARIED AND VITAL ROLE
ELECTRONIC SECURITY SYSTEMS-A Natural for Electronic Servicers
ET/D READER PREFERENCE SURVEY
FAULT FINDING IN MATV SYSTEMS
GETTING MORE OUT OF THAT NEW SIGN
gOING TO REMODEL THE STORE? HERE'S A GOOD CHECK LIST
HOW AND WHY-TRAPEZOIDAL
HOW TO TACKLE A REAL DOG
INTERPRETING MATV AMPLIFIER SPECS
managing to learn and learning to manage
managing to learn \& learning to manage
managing to learn and learning to manage
MANAGING YOUR BUSINESS-Retirement Programs for Owner/ Employees
MATV TAPS-SELECTION AND USE
MODERN SERVICING TECHNIQUES-Bipolar Transistors-What Every
Good Technician Should Know About Them
MODERN SERVICING TECHNIQUES-Field Effect Transistor
Fundamentals
10/20
10/32
4/32
11/16
7/20
8/26
5/36
10/36
11/51
4/36
1/30
2/30
2/27
2/33
9/38
$1 / 42$
3/41
5/42

3/39
7/22
6/42
8/28
MODERN SERVICING TECHNIQUES-SCR'S and Power Transistors MODERN SERVICING TECHNIQUES-Semiconductor Diode Theory,

Testing and Replacement
MODERN SERVICING TECHNIQUES-Testing and Replacement of Discrete Semiconductors, IC's and Modules
MODERN SERVICING TECHNIQUES-Troubleshooting Solid-State
TV Power Supplies and Regulator Circuits
NEW IN COLOR TV FOR 1975-Part 1
NEW IN COLOR TV FOR 1975-Part 2
NEW IN COLOR TV FOR 1975-Part 3
NEW IN COLOR TV FOR 1975—Part 4
PROFITABLE AND COMPETITIVE PRICING OF SERVICE LABOR
REPLACEMENT COLOR PICTURE TUBES-Propping up Servicers' Profits SELECTING COMMERCIAL AUDIO AMPLIFIERS
SELECTING SPEAKERS FOR COMMERCIAL AUDIO SYSTEMS
SELLING TV ANTENNAS TO CATV SUBSCRIBERS
SENSE AND NONSENSE COLOR-TV "CASE HISTORY" FAULTS
SERVICING SOLID-STATE AGC CIRCUITS
SERVICING TWO-WAY RADIO
SOLVING SYNC PROBLEMS IN SOLID-STATE TV
SONY'S WIDE-ANGLE TRINITRON COLOR TV
SQUARE-WAVE TESTING OF AUDIO AMPLIFIERS
SUPERIOR BABY FOODS
SYSTEM OFFERS THREE WAYS TO BUILD RECEIVER SALES
TECH BOOK DIGEST-Electronic Adjustments in Auto Tape Players
TECH BOOK DIGEST-Picture Tube Repairs
TECH BOOK DIGEST-Stereo Audio Measurements
TECH BOOK DIGEST-Troubleshooting Solid-State Multivibrators
TEKLAB Report-Admiral Color TV Chassis M25
TEKLAB Report-GTE Sylvania Color TV Chassis E06—Part 2
TEKLAB REPORT-Magnavox Color TV Chassis T982-Part 1
TEKLAB REPORT-Magnavox Color TV Chassis T982-Part 2
TEKLAB REPORT-Sylvania Color TV Chassis E06
TEST INSTRUMENT REPORT- B \& K Precision Model 282 Digital Multimeter
TEST INSTRUMENT REPORT-B \& K Precision Model 1431 TriggerSweep Scope
TEST INSTRUMENT REPORT—Data Technology Model 20 Digital Multimeter
TEST INSTRUMENT REPORT-Hewlett-Packard Model 1220A Oscilloscope
TEST INSTRUMENT REPORT-Hickok's Model 239 Color Bar Generator
TEST INSTRUMENT REPORT-Leader LCG-395 Universal Color Bar Pattern Generator
TEST INSTRUMENT REPORT-Measuring DC Beta with the Heathkit Model IT-121 FET/Transistor Tester
TEST INSTRUMENT REPORT-RCA Model WO-33B Oscilloscope
TEST INSTRUMENT REPORT-TeleMatic Tuner-Mate Substi-Tuner Model KT 730
TEST INSTRUMENT REPORT-Reviewing Specifications for $3 M^{\prime}$'s
Model 6500 Recorder Test Set
THE EXPANSION OF CITIZENS BAND
THE MAKING OF A COLOR PICTURE TUBE
TV INTERFERENCE-Causes and Cures 12/34

a professional TV service scope with a practical price

It's hard to find a better TV service scope value than the new Heathkit 4530. Features like TV coupling, DC-10 MHz bandwidth, wide-band triggering capability, sensitive $10 \mathrm{mV} / \mathrm{cm}$ vertical input and calibrated X-channel input make it a versatile, easy-to-use scope every service technician will appreciate.
Trigger circuits are digitally controlled, requiring only a level control and a slope switch. Various trigger signals can be selected: a sample of the vertical input signal, a sample of the line voltage or an externally applied trigger signal. In the TV trigger coupling mode, the 4530 can be easily triggered on the vertical or horizontal signal in a composite video signal such as the one shown above. Trigger bandwidths are guaranteed to $15 \mathrm{MHz}, A C$ and $D C$ coupled. A low-pass filter with 1 kHz cut-off is used in the TV coupling mode.
High or low frequency waveforms are no problem since the 4530's wide range of time bases can be switched from 200 $\mathrm{ms} / \mathrm{cm}$ to $200 \mathrm{~ns} / \mathrm{cm}$. And any sweep can be expanded five times.
The 4530 is one of the few single trace scopes available with two input channels. For true $\mathrm{X}-\mathrm{Y}$ operation, a calibrated X -input is provided with maximum sensitivity of $20 \mathrm{mV} / \mathrm{cm}$.
The 4530 is easy to operate, easy to service and offers a lot of performance per dollar. The $10-4530$ is available in easy-toassemble kit form for only $\$ 299.95^{*}$. Or order the factory assembled and calibrated SO-4530, just \$420.00*.
The latest Heath/Schlumberger Assembled Instruments Catalog features a complete line of high performance, low cost instruments for service and design applications. Our '75 Heathkit Catalog describes the world's largest selection of electronic kits - including a full line of lab and service instruments. Send for your free copies today.
HEATH COMPANY
Dept. 24-1
Dept. 24-1
\square Please send the 1975 Heathkit Catalog.
\square Please send the latest Heath/Schlumberger Assembled Instruments Catalog
Name
Title
Company/Institution.
Street
*Mail Drder prices; f. o. r. factory.
State \qquad Zip
pRICES A SPECIFICATIONS SUBJECT TO CHANGE Witheut notice.
. . . for more details circle 113 on Reader Service Card JANUARY 1975, ELECTRONIC TECHNICIAN/DEALER

Ask your local distributor or write...
Weller-Xcelite Electronics Division

The Cooper Group

ORCHARD PARK, N.Y. 14127

[^4]TEST
INSTRUMENT REPORT

> Tekelec Model TA 357 Digital Multimeter

- Equipped with a $31 / 2$ digit, fieldeffect, transmissive, liquid crystal display, the Model TA 357 multimeter is capable of measuring DC and AC voltages ranging from 100 microvolts to 19.99 Kv (50 Kv with optional probe), DC and AC currents ranging from 100 nA to 199.9 ma , and resistances ranging from .1 ohms to 199.9 K ohms. In addition, a special +10 v DC output permits measurement of leakage currents and conductance (up to $200 \times 10^{-6} \mathrm{mho}$).

Functions and ranges are selected by cight interlocked pushbuttons on the front of the instrument. Selection of either the voltage or current measuring function is accomplished by pushing in the buttons labeled " V " or "I," respectively, and then either pushing in the $\mathrm{AC} / \mathrm{DC}$ button for AC measurement or releasing it to the out position for DC measurement. Illumination of the letters "AC" or "DC" on the right of the numerical display automatically tells you whether the instrument is in the AC or DC measuring mode. In the DC mode, the polarity of the voltage or current is automatically indicated by the appearance of either a - or + sign on the left of the numerical display. In the current measuring mode ("I" button pushed in), the letters " mA " also appear to the right of the numerical display. Selection of the resistance measuring function is accomplished by pushing in the button labeled " Ω," which causes the designa-
tion "K Ω " to appear to the right of the numerical display.

Selection of one of the four ranges of the TA 357 is accomplished by pushing in either the ". 2 ," " 2 ," " 20 " or " $200 /$ LINE TEST" buttons. The decimal point in the display is automatically positioned by the range pushbuttons.

Zeroing of the instrument is accomplished by a thumbwheel type control labeled "Zero" on the top of the instrument.

If the quantity being measured exceeds the full-scale capability of the range selected, the display flashes on and off, clearly indicating the overrange condition.

The TA 357 is designed to be powered by $117 \mathrm{VAC}, 60 \mathrm{~Hz}$ but is available in an optional version which operates on $220 \mathrm{VAC}, 50 \mathrm{~Hz}$. The line voltage applied to the instrument is automatically measured and displayed without external probe connections when the on/OFF/TEST switch is pushed down to the spring-loaded TEST position and the $\mathrm{v}, 200 /$ Line test and AC/DC BUTTONS are pushed in.

The multimeter is protected by a .25 -amp fuse in the primary of the power supply and a .25 -amp fuse in the input circuit. Both fuses plus a spare are located beneath a slide-out panel on the bottom of the instrument.

Input impedance in the voltage measuring modes is 10 megohms shunted by less than 100 pf of capacitance. The frequency range for AC voltage and current measurements is 40 Hz to 20 KHz .

Current through resistances being measured is 1 mA in the ". 2 " and " 2 " ranges, and .01 mA in the " 20 " and " 200 " ranges. The maximum voltage which can be safely applied to the input circuit in the voltage and resistance measuring modes is 480 volts p-p. In the current measuring modes, the input circuit appears as a short to input voltages in excess of 3.6 volts.
Tekelec's Model TA 357 is housed in a high-impact cycolac case which is $23 / 8$ inches high by $51 / 4$ inches wide by $91 / 2$ inches deep.

Price of the TA 357 is $\$ 179$, complete with test leads and a 100:1 highvoltage (20 Kv) probe. An optional 50 Kv high-voltage probe is available for $\$ 39.95$.

[^5]
TECHNICAL DIGEST

The material used in this section is selected from information supplied through the cooperation of the respective manufacturers or their agencies.

MAGNAVOX

Radio Chassis R331/332-Diode Reversed

The Audio Driver modules used in these chassis, Part No. 703688-1, have diode D403 incorrectly screened on the PC board. Because of this error, the initial production of these chassis has the diode installed backwards. The symptoms that may occur are bass distortion and possible Automatic Protection Circuit Activation. Production is now installing the diode correctly. The correct polarity of the diode is cathode of D403 to emitter of Q408. These chassis are used in Model KE1570 and KE1580.

Radio Chassis R286-Schematic Correction

The schematic in Service Manual 1526 has two errors in the audio output section. Resistor R230 should be in parallel with D202 instead of D206. Resistor R231 should be in parallel with D203 instead of D207. The copper layout in the manual is correct.

Color TV Chassis—High Voltage Rectifier/Tripler Short

In cases of high voltage/tripler failure in early production TV sets using these chassis, there is a possibility that the horizontal output transformer, T302, and other associated components may be damaged. Other components to check when this type of failure occurs include: Capacitor C 104 , resistor R140, the power supply diodes, and the Video Delay module.
The possibility of multiple component failure can be prevented by changing R 140 to a carbon film type 1 K ohm resistor (Part No. 230214-1025). Whenever these early production units are in the shop, R 140 should be changed to a carbon film type resistor as preventative maintenance. Elevate the resistor $1 / 4$-inch above the PC board. Current production (identified by the numeral 2 as the last digit of the model number such as CE4360WA12) uses a carbon film resistor for R140.

Videomatic TV Sets-New LDR Holders

A new LDR holder assembly has been developed to minimize the possibility of LDR damage from static discharges. The new assembly is made of two parts-the holder (Part No. 143593-1) and the insert (Part No. 143592-1). The entire assembly is still removable from the front of the instru-

ment as usual, but to separate the holder from the insert the holder must be gripped as shown in illustration and squeezed to unlock it. This new assembly may be used to replace all original holders with the part number 142848 or 143290 .

NEW IMPROVED instant-uelo Adhesive

Now a choice of 4

formulas . . . and in Big 1900 drop application container.
SAVE BIG only $\$ 8.95$
(less than $1 / 2 ¢$ an application)
order from
YOUR ONEIDA DISTRIBUTOR
OR DIRECT FROM US.

NEUSES

NUMBERING AND LETTERING KIT

Use for marking almost any type of background materials with non-fading, vivid, easy-to-read clean marking. Ideal for marking switchboard panels, junction boxes, sub-assemblies, chassis, cables, wire, etc.

Contents: Peg rabber stamps $3 / 4^{\prime \prime}, 3 / 8^{\prime \prime}, 1 / 4^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 8^{\prime \prime}$. A-Z letters, numbers and symbols. Stamp repair sets. Fuse capacity stamps $3 / 8^{\prime \prime}$ and $3 / 16^{\prime \prime}$. Ink tubes for vermillion, yellow, black, white. Inking plate, knife, brushes, cleaning fluid. Housed in sturdy steel carrying case. $12 \frac{3}{4}$ " long x $712^{\prime \prime}$ wide $\times 5^{\prime \prime}$ deep.

Write for new catalog on the most complete line of small tools for the telephone, communications and electronic industries.

P. K. Neuses, Inc.

Box 100 / Arlington Heights, Illinois 60006 PRECISION TELE.COMMUNICATION TOOLS . for more

DELUXE DIGITAL COLOR CONVERGENCE GENERATOR

NOW AT A PRICE EVERYONE CAN AFFORD

rock solid patterns
all ic countdown circuits quartz crystal oscillators 2 full years' warranty

10 Patterns: Full \& Gated Rainbow, 4 Crosshatch, 4 Dot, Die, Casted $1 / 8^{\prime \prime}$ Aluminum Case.

MODEL
$\$ 59^{95}$
SG-150
reg. $\$ 74.95$

10 Patterns: B\&W Bars, White Field, 4 Crosshatch, 4 Dot.

2 Patterns: 20×16 Crosshatch, 320 Dots, weight only 17 oz .

[^6]
NEW PRODUCTS

Descriptions and specifications of the products included in this department are provided by the manufacturers. For additional information, circle the corresponding numbers on the Reader Service Card in this issue.

UHF MOBILE ANTENNA

700
Combines the most desired operating characteristics

The Antenna Specialists Co. has announced the development of a new antenna which combines all of the most frequently desired operating characteristics for UHF mobile antennas into one design. The Model ASP-830 features over 5 dB of gain and can handle 150 w of RF power continuously. It maintains a VSWR of less than 1.5:1 over a wide working bandwidth of at least 9 MHz , making it ideal for use in repeater systems or for broadband monitoring. It achieves its performance characteristics through the use of a pair of $5 / 8$-wavelength radiators in a collinear design. Phasing is accomplished with a phasing coil assembly that is one-piece molded to the radiators. A threaded metal insert in the molded base provides the extra strength and durability of a metal-tometal fitting.

OSCILLOSCOPE

Compact size
and lightweight
A compact 50 MHz dual-trace oscilloscope was introduced by Philips Test \& Measuring Instruments, Inc., a subsidiary of North American Philips Corp. Designated the Model PM3240, the oscilloscope employs DC switching

for all functions. A magnesium alloy casting and a switching power supply

346 Ways

 To Save On Instruments!EICO's Test Instruments line is the industry's most comprehensive because each instrument serves a specific group of professional needs. You name the requirementfrom a resistance box to a VTVM, from a signal tracer to a scope, from a tube tester to a color TV generator, etc., you can depend on EICO to give you the best professional value. Compare our latest solid state instruments at your local EICO Electronics Distributor, he knows your needs best-and serves your requirements with the best values!

"Build-it-Yourself" and save up to 50% with our famous electronic kits.

For latest EICO Catalog on Test Instruments, Automotive and Hobby Electronics, Eicocraft Project kits, Burglar-Fire Alarm Systems and name of nearest EICO Distributor, check reader service card or send $50 ¢$ for fast first class mail service.
EICO-283 Malta Street,
Brooklyn, N.Y. 11207
30 years of service to the Professional Serviceman.

for more details circle 106 on Reader Service Card
serve to reduce the size and weight. Basic specifications of the oscilloscope includes $5 \mathrm{mV} /$ div. sensitivity at full bandwidth and 10 nanosecond/div. maximum sweep rate. The 50 MHz bandwidth and 7 nanosecond risetime can be displayed separate, alternate, chopped and X-Y modes. The high 1 MHz chopping rate helps to eliminate interference with displayed signals. The attenuator eliminates the need for external measuring of the X axis input. A separate delay timebase control has intensified screen indication and a $0.5 \mathrm{sec} / \mathrm{div}$. to $10 \mathrm{nsec} / \mathrm{div}$. range. A full 8 by 10 centimeter screen with a 10 kv accelerating potential enables easy and detailed viewing at even the narrowest one-shot pulses. Price is $\$ 1470$ without probes.

ACCOUNT COLLECTION SYSTEM
 Simplifies follow-up and
 702

speeds payment of overdue accounts
Ever Ready Label Corp. has developed the DART (Delinquent Account Recovery Technique). The system is an extension of their line of collection stickers. In addition to the three Collection Stickers, other components of the system are: a rotary desk file with 3 by 5 Follow-Up Cards, and three small colored labels coordinated with the colors of the three Collection Stickers. When an account is overdue, basic data is entered on the Record Card and slipped onto the rotary file. Collection Sticker \#1 (blue) is affixed to the statement to be mailed. The small colored label (also blue) is affixed to the edge of the card and becomes an indexed marker. The same

procedure is repeated with Collection Stickers \#2 and \#3, coordinated with the appropriate colored small labels. The Follow-Up Record Cards are printed on both sides and provide for the necessary current information. It also allows for personal phone contacts between statements. As partial

[^7]payments are made, they can be posted. And when payment is made in full, the card is easily pulled from the file. Price is $\$ 79.95$.

DIGITAL MULTIMETER

703
Features a frequency counter and can measure capacitance

A digital multimeter, featuring a $41 / 2$-digit Sperry planar display in 44 ranges has been announced by PECK/ BOSS, Inc., Electronic Div. The Model 390 multimeter is a versatile bench type meter, a frequency counter and it can measure capacitance in seven ranges from 1 nano farad to 100 mi -

cro farads. The instrument has eight resistance scales from .1 ohms to 1000 continued on next page

I
 Get a ${ }^{\text {s5 }}$ 5 Shirt lettered to advertise your business I FREE as a BONUS!

WE WANT YOU to be our customer. And we'll do anything to make it happen! Why? Because once you've experienced the quality, value and long wear of our vast array of work garments and accessories-the businessbuilding impact of our lettered garmentsyou'll do business with us for a long time. And that's the whole idea.
So, we'll give you a 65% Dacron $/ 35 \%$ Cotton Permanent Press $\$ 5.95$ shirt free lettered free
. when you buy a pair of our Permanent Press Dacron/Cotton pants at regular price. One day's wear will convince you that we should be your work uniform source from now on!
PICK COLORS \& SIZES HERE
PANTS COLORS: Navy blue, grey, green, blue or brown.
PANTS SIZES: Waist $28^{\prime \prime}$ thru $34^{\prime \prime}$;
Even $36^{\prime \prime}$ thru $50^{\prime \prime}$.
Inseams: $2^{\prime \prime}$ thru $35^{\prime \prime}$.
SHIRT COLORS: White, light grey, blue,
NECK SIZES: Small, Med., Lg., XIg., XXIg.
(Short sleeves only with this offer).
Just check exactly what you want on coupon below. Clip and mail with $\$ 9.25$. We pay all shipping charges. Satisfaction guaranteed.
ELIN MANUFACTURING CO.

W
In
Inseam

\square I enclose $\$ 9.25$. Ship postpaid Mail entire ad and $\$ 9.25$ to ELIN MANUFACTURING COMPANY Dept. 20 Rochester, Ind. 46975.

Replacement Delay Lines for More Than 500 Color TV Moteds

NEW PRODUCTS...

continued from preceding page
megohms full scale. Other features are 10,000 megohm input impedance on 10 DC . Eight ranges of DC current from $1 \mu \mathrm{a}$ DC to 1 a full scale. The unit is overload protected by a fuse.

ANTENNA PREAMPLIFIER

Gain of over five
times its input level
ACM has added a Model AA37, Antenna Preamplifier to its line. The unit has a 300 -ohm antenna input and a 75 ohm output for use with MATV systems or in areas with high noise levels. The preamplifier boosts the signal at

the antenna where they are strongest and free from interference. The unit provides a gain of 16 dB or over five times the input level.

PORTABLE SOLDERING IRON KIT

 705Features pushbutton operation and is rechargeable overnight
General's Electric's Tube Products Dept. is making available to independent service dealers a cordless, portable soldering iron kit. Offering high wattage performance at low power, the iron's "Iso-Tip" soldering tip construction eliminates electrical leakage, need for grounding and possibility of damage to highly sensitive electronic components. Ready for use in 3-5 seconds, the iron features pushbutton operation, built-in work and pilot light and is rechargeable overnight. The kit
 includes case, battery charger and one regulas tip. Price is $\$ 19.95$.

FREE ALARM CATALOG

Full tine of professional burglar and fire alarm systems and supplies. 96 pages, 450 items. Off the shelf delivery, quantity prices
mountain west alam
4215 n. 16 th st., phoenix, az. 85016

IEC-MULLARD

MINIMUM 10
POPULAR 6GH8
ORDER No. X 114
SEND CHECK WITH ORDER - WEPAY SHIPPING CHARGE
"WE SELL TO THE DEALER ONLY"
FREE BIG WHOLESALE CATALOG
with thousands of money-saving audio. electronic parts, test equipment and accessories.

[^8].. for more detalls circle 124 on Reader Service Card

DEALER SHOWCASE

Descriptions and specifications of the products included in this department are provided by the manufacturers. For additional information, circle the corresponding numbers on the Reader Service Card in this issue.

4-CHANNEL TURNTABLE

Completely equipped and priced at under \$100
BSR has introduced the Model 4310X 4-channel automatic turntable. The turntable comes completely equipped with a molded base with walnut trim, removable hinged tinted dust cover, and an Audio Technica AT-12S CD-4 magnetic Shibata diamond stylus cartridge and all necessary 4-channel

cables. The unit comes completely assembled, adjusted and packed in a single carton. It also features a shielded anti-magnetic steel platter, stylus force adjustment, anti-skate control, viscousdamped cue/pause control, jamproof tone arm with automatic arm lock.

COLOR TV

Features in-line picture tube and all solid-state modular chassis

A new 19 -inch color TV model that comes complete with super bright in-line picture tube, 100% solid-state modular chassis and matching swivel base has been added to the Magnavox line. The unit, Model 4352, comes

complete with matching swivel base. Other features include 185 square inch picture, automatic fine tuning, automatic color, 70 detent UHF tuning and 13 detent VHF tuning, sharpness control and lighted channel indicator. Price is $\$ 449.95$.

The Hickok Model 512 Dual Trace Oscilloscope eliminates the set-up and precision problems you've had to accept using other triggered scopes.
It's easy to set up

- Simplified color-coded front panel controls
- Beam finder quickly locates off-scale traces.
- Foolproof triggering to 15 MHz .

It gives you superior performance
$\square 10 \mathrm{MHz}$ response flat within
3dB. Excellent pulse response.

- Unique automatic VITS sync separator.

Hickok industrial lab quality and construction
Glass epoxy PC boards used
throughout. Regulated power supply
Plus, our exclusive two-year warranty
Ask to see the Hickok Model 512 or single trace Model 511 at your Hickok distributor or contact us for more information.
${ }^{\text {s }} 67500$
complete with probes and accessories

HICKOK

the value innovator
INSTRUMENTATION \& CONTROLS DIVISION THE HICKOK ELECTRICAL INSTRUMENT CO 10514 Dupont Avenue - Cleveland, Ohio 44108 (218)541-8060 • TWX: 810-421-8286

CLASSIFIED

RATES: $35 \$$ per word: $45 \$$ per word Bold Face Type. Add $\$ 3.00$ if you wish Box Number. Minimum $\$ 10.00$ charge. Classified Display Rate billed $\$ 40.00$ per inch, 1 inch minimum

For Sale

Television Service Business for Sale. In operation for nearly 25 years and we have more work than we can handle. We have several contract accounts which keep us very busy, plus a large following of regular customers. Call or write for particulars: Mr. Harry R. Johnson, VALLEY TV \& APPLI ANCE CENTER, 1252 North Main St., Salinas, CA 93901. (408) 449-7208.

ELECTRONIC ORGAN KITS, KEY-

 BOARDS for organs and synthesizers. Independent and divider organ tone generators, diode keying. 35ϕ for cata log. DEVTRONIX ORGAN PRODUCTS, Dept. A, 5872 Amapola Drive, San Jose, CA 95129.LIQUID crystal. $31 / 2$ digit wristwatch display. New, with instructions for building wristwatch. Final close-out. Less than original, factory wholesale price, $\$ 5.50$ each. Two for $\$ 10.00$. TRICOUNTY WINSLOW, INC., Box 5885 , Grand Central Station, New York, NY 10017.

For Sale: 72 sets of Sam's Photofact Schematics, 1218-1289. Make Offer. Contact: Mr. Wayne A. Frye, Route 2, Box 173, Edinburg, VA 22824.

LOW noise resistors- $1 / 4 \mathrm{~W}, 5 \%$, carbon film from $10-3.3 \mathrm{Meg}$ for $31 / 2 \phi$ each. Fifty of one value for $\$ 1.25$: 10% discount over $\$ 50.00$. 75ϕ postage/handling. Free samples and specifications. COMPONENTS CENTER E, Box 134, New York, NY 10038.

EVERYTHING you always wanted to know about service contracts, but didn't know who to ask. "THE SERVICE CONTRACT COOKBOOK" only $\$ 15.00$ postpaid when you ask NATESA, Dept. SC, 5908 S. Troy, Chicago, IL 60629.

For Sale

RCA--Solid-State Oscilloscope, type WO-505A
$\$ 175.00$
RCA-Master Chro-Bar Generator, type WR-515A $\quad 100.00$
RCA—Solid-State Master Voltomist, type WV-510A .-.............. 90.00
RCA-Bias supply, type WG-307B 10.00

RCA-Marker Signalyst, type WR-525A 20.00

RCA-25 inch. CTC-24 color television, with brand-new Matrix
Picture Tube and flyback transformer, table model (no stand)
180.00

Jud Williams--Transistor Curve Tracer, Model A
90.00

Eico-Solid-State Signal Tracer, Model 150 35.00

Conar-Resistor-Capacitor Tester, Model 311 15.00
Conar-Communication Transmitter-Kit, assembled 15.00

Conar--Color Television Chassis, Model 600 with Cabinet,
less Picture Tube
25.00

Sencore-Transistor FET Tester, Model TF17A 20.00
Electro-Transistor-Power Supply, Model-E3 0-24 @ 100 ma. $--\quad 10.00$
Kine-Color Circuit Analyzer, Model CA378 $\quad 10.00$
Contact: William D. Shevtchuk
1 Lois Avenue, Clifton, N.J. 07014. Phone: 201-471-3798

send a message... ..write here.

[^9][^10]
ELECTRONIC technician/dealer CLASSIFIED

FLYBACK checker, scope adaptor. Easy to operate. Removal from circuit not necessary. $\$ 10.95$ postpaid. E. P. ElECTRONICS, 17 East El Vado, Tucson, AZ 85706.

LAKESIDE PICTURE TUBE RE-BUILDER-complete with many extras, e.g., neck glass, bases, pump oil, practice stems, spark coil, face plates. $\$ 1500$. FOB Oxon Hill, Md. (301) 2922070.

DYNACO-A-R, transistors, repairsboards \& units, speaker service. Send for prices and details: BEAR ELECTRONICS, 177-ET-Hillcrest Road, Mt. Vernon, NY 10552.

PRAC'TICAL applications of digital IC's. 100 's of tips, circuits, projects on TTL. 443 pp. $\$ 19.95$, money-back guarantee. GEA, P.O. Box 285, Northfield, OH 44067.

VISTA DIGITAL CROSSHATCH

For professional, accurate color T.V. convergence. Digital IC's coupled with a crystal timebase oscillator provide SYNC for precise horizontal and vertical lines.
Accurate 8×7 crosshatch or 56 dot pattern. A.C. power $2 \times 33 / 4 \times 6 \mathrm{in}$. Fits in tool kit completely assembled in U.S.A. \$41.95. Ready to use. Include $\$ 2.00$ for shipping and handling.

PHOTOLINE CORPORATION 118 EAST 28 STREET, NEW YORK, NY 10016

Antique radio tubes and Riders Manuals for sale. Less than dealers' prices. G. C. Goodwin, 126 W. First Ave., Rankin, IL 60960.
T.V. shop close-out sale: Common Tubes 70% off list price. 20% off list price of Heath Kit Vectorscope, Marker/sweep generator, B \& K CRT Tester, Channel Master Field Strength Meter \& other misc. items. Postage paid. For more information write: Ainsworth Communications, P. O. Box 23, Ainsworth, Nebr. 69210, or phone 1-402-387-1990.

Educational Courses

REPAIR TV TUNERS-High Earn.
ings; Complete Course Details, 12 Re pair Tricks, Many Plans, Two Lessons, all for $\$ 2$. Refundable. Frank Bocek, Box 3236, Ent., Redding, CA 96001.

Wanted

WANTED-ELECTRONIC TECHNICIAN, UNUSUAL OPPORTUNITY FOR ONE WELL QUALIFIED IN COLOR TV. TOP SALES AND SERVICE SHOP HAS 40 YEAR REPUTATION. WE MUST REPLACE RETIRING PARTNERS. MUST BE HONEST, EAGER TO LEARN, AND ENJOY SERVING PEOPLE. CONTACT: WELLS \& LaHATTE, VICKSBURG, MS. 39180.

COLLECTOR WANTS: Collections or dealer's stock of 78 rpm records-jazz, blues, country; 1925 to 1940. Also old comic books. Will travel. Dunner, 11 Golden Hills, Saugus, Mass. 01906.

Wanted: An extra instruction manual for Winston Electronics Corporation DYNAMIC SWEEP CIRCUIT ANALYZER Model 820, or the present address of the Winston Electronics Corporation of Philadelphia. Philip Butler, Box 581, West Brookfield, MA 01585.

Wanted: Picture tube rebuilding equipment and supplies. Call or write: George Antimisiaris, 20 Coleville Road, Wayne, NJ 07470. (201) 839-4925.

Exclusive new safety light shows when power is on MODEL 540S \$10.95 NET
Two heats-20w and 40w-to handle any job - On-off switch . Cool, unbreakable polycarbonate handle - |ronclad tips for longer life - Burn-resistant neoprene cord - $81 / 2^{\prime \prime}$ long, 2 oz - Converts to a desoldering iron with low cost attachment . Also desoldering irons and soldering/desoldering kits.
See your distributor or write

for more details circle 109 on Reader Service Card

T \& T
 VALUE SALE

RAY., I.C.C., RCA, SYL.
FAMOUS MAKE, NEW JOBBER-BOXED TUBES 80\% OHF LIST

$1 \mathrm{B3}$	5 for $\stackrel{80 \%}{ } \mathbf{5} .00$							
1V2	5 for \$3.00	$\square 6 \mathrm{HB} 7$	or \$4.85					
\square 2AV2	5 for \$3.95	\square 6HQ5	5 for \$6.35					
- 3A3	5 for \$5.05	-6HV5	5 for \$11.80					
$\square 3 \mathrm{~T}$ - ${ }^{\text {[}}$	5 for \$4.90	\square 6JC6	5 for \$5.65					
$\square 3 \mathrm{GK5}$	5 for \$4.85	\square 6JE6	5 for \$11.15					
\square 3HA5	5 for \$4.80	\square 6JS6	5 for \$9.30					
$\square 3 \mathrm{HM5}$	5 for \$ 4.80	$\square 6 J U 8$	5 for \$5.55					
[] 4B26	5 for \$ 4.70	\square GKA8	5 for \$6.15					
5 GH8	5 for \$5.90	\square GKE8	5 for \$7.65					
\square 6AX4	5 for \$5.05	\square 6KM6	5 for \$11.25					
GAY3	5 for \$5.05	6KN6	5 for \$9.85					
\square 6BK4	5 for \$9.35	\square 6KT8	5 for \$6.85					
\square 6CG3	5 for \$4.95	$\square 6 \mathrm{CZ}$	5 for \$5.15					
[. 6CG8	5 for \$5.40	\square 6LB6	5 for \$10.75					
\square 6CJ3	5 for \$4.70	\square 6LQ6	5 for \$11.15					
\square 6Da6	5 for \$6.75	$\square 8 F Q 7$	5 for \$ $\$.75$					
- 6DW4	5 for \$4.70	-12BY7	5 for \$4.50					
\square 6EA8	5 for \$4.95	12GN7	5 for \$7.00					
\square 6EH7	5 for \$4.80	$\square 17 \mathrm{Z8}$	5 for \$4.50					
\square 6EJ7	5 for \$4.50	$\square 21 \mathrm{GY5}$	5 for \$6.30					
\square 6FQ7	5 for \$3.75	$\square 2329$	5 for \$6.00					
\square 6GF7	5 for \$6.65	$\square 31106$	5 for \$10.15					
6GH8	5 for \$3.95	$\square 33 \mathrm{GY} 7$	5 for \$8.05					
\square 6GJ7	5 for \$3.40	$\square 36 \mathrm{MC6}$	5 for \$11.40					
\square 6GM6	5 for \$5.25	- 38HE7	5 for \$ $\$ 9.20$					
\square 6GU7	5 for \$5.25	$\square 38 \mathrm{HK} 7$	5 for \$9.00					
\square GGY6	5 for \$ 4.35	\square 42KN6	5 for \$9.15					
FREE- $\$ 100.00$ LIST OF CONTROLS WITH ANY PURCHASE OF 100 TUBES LISTED ABOVE *A 6GH8 SPECIAL 100 for $\$ 59.00$								
				TRANSISTORS XACT. REPLACEMENT (BOXED) Up To 90 $\begin{array}{lllll}\square & \text { SK3004 } & 5 \text { for } \$ 1.90 & \square & \text { SK3052 } \\ 5 & \text { for } & \$ 3.90 \\ \square \text { SK3009 } & 5 \text { for } \$ 3.90 & \square & \text { SK3054 } & 5 \text { for } \$ 4.50\end{array}$ $\begin{array}{lll}\square \text { SK3009 } & 5 \text { for } \$ 3.90 & \square \text { SK3054 } \\ \square & 5 \text { for } \$ 4.50 \\ \square & \text { SK3010 } & 5 \text { for } \$ 2.10 \\ \square\end{array}$ $\begin{array}{llll}\square \text { SK3018 } & 5 \text { for } \$ 2.25 & \square \text { SK3103 } & 5 \text { for } \$ 3.90 \\ \square & \$ 3.00\end{array}$	\square SK3018	5 for $\$ 2.25$	SK3103	5 for $\$ 3.00$
:---	:---	:---	:---					
\square	SK3021	5 for $\$ 3.15$	SK3114	for $\$ 2.40$ $\begin{array}{llll}\square \text { SK3024 } & 5 \text { for } \$ 3.15 \\ \square & \square \\ \square\end{array}$ ■ SK3025 5 for $\$ 4.50 \quad \square$ SK3132 5 for $\$ 2.60$ $\begin{array}{llll}\square \\ \square & \text { SK3040 } & 5 \text { for } \$ 3.75 & \square \text { ECG155 } 5 \text { for } \$ 4.90\end{array}$ \square SK3041 5 for $\$ 4.20 \quad \square$ ECG131 5 for $\$ 3.90$ \square SK3042 5 for $\$ 6.60 \quad \square$ HEP707 5 for 15.00				

DIODES \& RECTIFIERS
$\begin{array}{lllll}\square \text { RCA Damper Diode Equiv. To: } \\ \square \text { RCA } & 120818 & \$ 1.95 & \square \text { RCA } & 135932\end{array} \mathbf{\$ 2 . 9 5}$ \square RCA 120818 \$1.95 $\quad \square$ RCA 135932 \$ $\$ 2.95$
\square ITT 6500 PIV Color Focus Rect 10 for $\$ 5.00$ \square ITT 6500 PIV Color Focus Rect 10 for $\$ 5.00$
$\square 2.5 \mathrm{amp} 1000$ PIV IR170 20 for $\$ 3.00$ $\begin{array}{ll}\square \\ \square & 5 \mathrm{amp} 1000 \text { PIV IR170.... } 20 \text { for } \$ 3.00 \\ \\ \square\end{array}$
YOKES \& TUNERS
\square Tuner inc. GGS7, 6HA5
\square Combo Tuners inc. tubes
Syl. Tuner $54-35055-4$ inc. 3 transistors
$\$ 1.95$
\square Y105, Y94, Y130, 95-2874
\square Y105, Y94, Y130, 95-2874ea. $\$ 6.95$
\square Zen. Color Yoke $95-2532$ repl
2 for $\$ 15.00$
\square RCA Color Yoke 906214.501 Yoke $\$ \$ 8.95$ RCA - ZENITH MODULES
\square 132581,
\square 132579, 133455
$\square-50,9-59,9-79$

Audio

$\square 60$ Min. Cassette Irish
84 Min. 8-track Irish Tape
. $\$ 3.00$
ea. $\$ 3.49$

6 for $\$ 2.50$
84 Min. 8-track 3 for $\$ 3.00$
\square Equiv. Shure-N44, N75, N77, N91 ea. \$2.95
\square BSR Cartridges-SX5M, SX1H SC5M
\square Remote Mikes Min. Plug
\square Remote Mikes Mi. Plug
\square Stereo Head Set Min. Plug
Stereo Head Sets ea. $\$ 3.95$
\square Speaker Kit—incl. 2-4", 2-5"
ANTENNA SUPPLIES
\square J.F.D. Co-14 4 Set Coupler
$\square 72 \mathrm{ohm}-300$ ohm matching transformer

10 for $\$ 10.00$
$\square 2$ Set 72 ohm Coupler
5 for $\$ 5.00$
$\square 4$ Set 72 ohm Coupler $\$ 2.95$
72 ohm UHF VHF Signal Splitter 10 for $\$ 7.50$

- 59U F Connectors 100 for $\$ 10.00$

JFD DCM101 All Channel Color Antenna

GENERAL
$\square 19 \& 25^{\prime \prime} 21^{\prime \prime}$ Color Boosters. 3 for $\$ 11.95$
\square Zen. VOLTAGE TRIPLER, 212-136 3 for $\$ 12.00$ 117V-12V DC H.D. Transformer ...ea. $\$ 1.50$ Blue Lateral Magnets with P.R. 10 for $\$ 10.00$ \square Jap. Phono arm incl. cartridge. 10 for $\$ 5.00$ Minimum orders \$50-F.O.B. Brooklyn, N.Y. Catalogs \$1-Refundable upon your order C.O.D-GASH ONLY
T. \&\% T SALISS CO:

4802 AVENUE K
BROOKLYN, N. Y. 1123 S Phone: (212) 241-5940

THEY HAVE TO BE. THEY'RE ENGINEERED TO PROTECT YOUR COSTLY COMPONENTS FROM A CIRCUIT OVERLOAD.

ALL our fuses are subjected to the most rigid tests before they become a WORKMAN Amp Fuse or Sans-A-Fuse. ${ }^{\text {© }}$

The WORKMAN Sans-A-Fuse ${ }^{\circ}$ (circuit breaker with amp fuse pins) is so tough it may be reset time and time again and still maintain it's original reliability.

This is only possible because WORKMAN puts quality, reliability and performance into each of it's color coded Amp Fuses and Sans-A-Fuses ${ }^{\circledR}$ and both are tough as (expletive deleted)!

Workman
ELECTRONIC PRODUCTS, INC
Subsidiary of IPM TECHNOLOGY INC
BOX $3828 \cdot$ SARASOTA, FLA. 33578

NOW, with a WEST COAST WAREHOUSE located at:
P.O. Box 5218, 817 Douglas Avenue

Redwood City, California 94063
To better serve you.
. . . for more details circle 135 on Reader Service Card

READERS
 SERVICE INDEX

ADVERTISER'S INDEX

101 Antenna Corp of America 46
102 B \& K Division Dynascan Corp. 2
103 Bell Industries/J. W. Miller
Division
46
104 Blonder-Tongue
Laboratories, Inc.
11
105 Book Club Tab Books 16-19
106 Eico Electronic Instruments Co. 44
108 Elenco Electronics, Inc. 44
107 Elin Mfg. Co. 45
109 Enterprise Development Corp. . 49
110 Fluke Mfg., John 21
Fordham Radio Supply Co., Inc. . 47
111 GC Electronics Co. 9
General Electric Co. 4
GTE Sylvania, Electronic
Components
1
113 Heath, Co., The 41
114 Hickok Electrical Instrument Co. 47
115 International Rectifier Corp. . 7
116 Jerrold Electronics Corp. . Cover 3
117 Leader Instruments Corp. 10
118 Mountain West Alarm Supply Co. 47
122 P. K. Neuses 43
120 Oelrich Publications 50
121 Oneida Electronic Mfg., Inc. 43
123 PTS Electronics, Inc. Cover 2
124 Qualitone Industries, Inc. 47
125 RCA Electronic Instruments ... 24
RCA Electronic Components ... 8
128 Sprague Products Co. 5
131 T \& T Sales Co. 49
127 Telematic Div., UXL Corp. 49
129 Triplett Corp.Cover 4
130 Tuner Service Corp. 13
132 Wayne Electronics 29
134 Weller-Xcelite Electronics Div. 42
Winegard Company ….... 25
$135 \begin{aligned} & \text { Workman Electronic } \\ & \text { Products, Inc. }\end{aligned}$

IT'S NO PUZZLE TO ORDER

OELRICH SERVICE FORMS
FOR TV-RADIO \& 2 WAY RADIO SERYICE LEGAL FORMS FDR CALIF. FLA UTAH NOW AT YOUR PARTS JOBBER DR WRITE FOR CATALOG AGA OELRICH PUBLICATIONS
4040 N. NashVille ave. chicago. ILLINoIS 50034 . . for more details circle 120 on Reader Service Card

ELECTRONIC
URERTEALIS
COMPLETE MANUFACTURER S'CIRCUIT DIAGRAMS
COMPLETE MANUFACTURER S'CIRCUIT DIAGRAMS

269

Airline

 AIRLINE AIRLINETV Models general electric TV Chassis XA

SCHEMATIC No.
. 1564 QUASAR ELECTRONICS CORP.
Color TV Chassis ATS. CTS. TS. 94 Color TV Chassis ATS, CTS, TS. 942 SYLVANIA....
Color TV Chassis
1563

1563

CHASSIS LAYOUIT

COPYRIGHT 1975 EY ELECTRONIC TECHNICIAN/DEALER • I EAST FIRST ETREET, DULUTH, MINNESOTA $5 S 802$

1564

$4 \operatorname{cim}_{21}$

VHF Tuner Top View

COPYRIGHT 1975 日Y ELECTRONIC TECHNICIAN/DEALER • 1 EAST FIRST STREET, DULUTH, MINNESOTA 55802

1565

TS-942 Front Panel

COPYRIGHT 1974 GY ELECTRONIC TECHNICIAN/DEALER • I EAST FIRST STREET. DULUTH. MINNESOTA 55802

COPYRIGHT 1974 by ELECTRONIC TECHNICIAN/DEALER • 1 EAST FIRST STREET, DULUTH, MINNESOTA 55802

1567

COMPLETE MANUFACTURERS CIRCUIT DIAGRAMS
AND TECHNICAL INFORMATION FOR 5 NEW SETS

Top View of VHF Tuner (94A433-2) Showing
Test Point and Alignment Locations

VHF TUNER 94A433-2

Jim is one of the busiest antenna installers in Pennsylvania He does work for 17 major appliance dealers. But the bulk of his antenna sales come from his own advertising, yellow page listings and word-of-mouth recommendations from satisfied customers.

Jim doesn't try to be the cheapest - only the best.
He stresses quality of workmanship plus quality of materials.
With this philosophy and a lot of hard work. Action Sales has daubled sales volume each of the four years since Jim started the business.
"My reputation means everything to me," says Jim. "That's why I'm so delighted with the performance and durability of the Jerrold Super VU-Finder line. My customers aren't much interested in the technical specifications. But, they do want excellent color quality without interference and no problems from their antenna. And that's what Super VU-Finder delivers.

For more information on the Super VU-Finder line,
contact your local Jerrold Distrubutor or

JERROLD ELECTRONICS CORPORATION

 Distributor Sales DivisionP.O. Box 350

200 Witmer Road, Horsham, Pa. 19044

HiE IRROCD

 SUPERvHiNDER
IS THE FITEST MITETM GIEREUMIT:

SAYS JIM WELLENER ACTION SALES FEASTERVILLE, PA.

The easy-to-read 630 makes learning easy

The Model $630 \mathrm{~V}-\mathrm{O}-\mathrm{M}$ is priced at a thrifty $\$ 72$.

The rugged, general purpose Triplett Model 630 is the kind of dependable V-O-M that both teachers and students appreciate. And for the same reasons the electronic and electrical maintenance professionals do. Uncompromising accuracy. Sturdy lightweight (only 3 lbs with batteries). Simplified single switch operation holds errors to a minimum, and diode overload protection for the meter suspension movement reduces the chance of tester damage when mistakes do occur.
With long, clean scales covering 27 ranges in only four arcs, the Triplett Model 630 is remarkably easy-to-read.
It's packed with major features:

1. Diode overload-protected suspension movement $\mathrm{V}-\mathrm{O}-\mathrm{M}$; single range switch minimizes error.
2. 4 Ohmmeter range with 4.4 ohms center scale.
3. Simplified scale-only 4 arcs for all 27 ranges.
Sensitivity is 20,000 Ohms per Volt DC, 5000 Ohms per Volt AC.
Accuracy is an excellent 2% on DC, and 3% on AC . Measures resistance to 100 megohms, with 6,000 Volt $A C$ and DC capability.
Handles DC microamperes 0-60, and DC milliamperes $0-120$, both at 250 mV , and can read DC amperes 0-12.

Rugged black molded plastic case with removable black leather carrying strap. All this for just \$72.
Get the same convenience and operating advantages plus $1 \frac{1}{2} \% \mathrm{DC}$ accuracy and mirrored scale with the Triplett Model $630-\mathrm{A}$, priced at only $\$ 83$.
For more information or a free demonstration, call your Triplett
distributor or sales representative. For the name of the representative nearest you, dial toll free (800) 6459200. New York State, call collect (516) 294-0990. Triplett Corposation, Bluffton, Ohio 45817.
IITRIPLETT

[^0]: HARCOURT BRACE JOVANOVICH PUBLICATIONS: James Milholland, Jr., Chairman; Robert L. Edgell, President. Lars Fladmark Senior Vice President: Richard Moeller, 'Treasurer; John G. Reynolds, Vice President. Thamas Gren Vice President; Ezra Pincus, Vice President; Bruce B. Howat, Vice President; James Gherna, Vice President.
 ELECTRONIC TECHNICIAN/DEALER is published monthly by Harcourt Brace Jovanovich Publications Corporate Offices: 757 Third Avenue, New York, New York 10017. Advertising Offices: 43 East Ohlo Street, Chicago, Illinois 60611 and 757 Third Avenue, New York, New York 10017. Editorial, Accounting, Ad Production and Circulation Offices: 1 East First Street Duluth, Minnesota 55802. Subscription rates: One year $\$ 6$, two years $\$ 10$, three years $\$ 13$, in the United States and Canada. Other countries: one year $\$ 15$, two years $\$ 24$, three years $\$ 30$. Single copies: $75 ¢$ in the and Canada; all other countries $\$ 2$. Second class postage paid at Duluth, Minnesota 55806 and at additional mailing offices. Copyright (c) 1975 by Harcourt Brace Jovanovich, Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.
 POSTMASTER: Send form 3579 to ELECTRONIC TECHNICIAN/DEALER, P.O. Box 6016, Duluth, Minnesota 55806.

[^1]: <8

[^2]: From Chapter 11, LOGICAL COLOR TV TROUBLESHOOTING, by Ben Gaddis, TAB BOOKS, Copyright 1974. A review of the complete book follows part 2 of this article.

[^3]: Continued next month in Part 2

[^4]: . . For more details circle 134 on Reader Service Card

[^5]: For more information abouit this test instrument, circle 900 on the READER SERVICE CARD.

[^6]: . for more details circle 108 on Reader Service Card

[^7]:[^8]: QUALITONE INDUSTRIES, INC.
 17 Columbus Avenue, Tuckahoe, N. Y. 10707
 | Please send FREE Catalog to:
 | Name

 Address.
 City.
 State/Zip.

[^9]: 1. Number of insertions: (circle) $1 \begin{array}{lllll}2 & 2 & 3 & 6 & 12\end{array}$
 2. Start with (month) issue (Copy must be in by 1 st of month preceding)
 3. Amount enclosed: \$

 PAYMENT MUST ACCOMPANY ORDER WE'LL BILL RATED FIRMS NO AGENCY COMMISSION
 NAME
 COMPANY
 STREET
 CITY
 \qquad
 STATE $Z \mid P$
 MAIL COPY FOR AD(S) TO: ROZ MARKHOUSE, Electronic Technicían/Dealer, 757 Third Ave, New York, N. Y 10017

[^10]: RATES: $35 \not \subset$ per word; $45 \not \subset$ per word Bold Face Type. Add $\$ 3.00$ if you wish Box Number Minimum $\$ 10.00$ charge. Classified Display Rate billed $\$ 40.00$ per inch, 1 inch minimum

